• Title/Summary/Keyword: Hybrid supercapacitors

Search Result 32, Processing Time 0.025 seconds

Electrochemical Behavior Depending on Designed-Anode and Cathodes of Hybrid Supercapacitors (하이브리드 슈퍼커패시터의 음극 및 양극 설계에 따른 전기화학적 거동)

  • Shin, Seung-Il;Lee, Byung-Gwan;Ha, Min-Woo;An, Geon-Hyoung
    • Korean Journal of Materials Research
    • /
    • v.29 no.12
    • /
    • pp.774-780
    • /
    • 2019
  • The performance of Li-ion hybrid supercapacitors (asymmetric-type) depends on many factors such as the capacity ratio, material properties, cell designs and operating conditions. Among these, in consideration of balanced electrochemical reactions, the capacity ratio of the negative (anode) to positive (cathode) electrode is one of the most important factors to design the Li-ion hybrid supercapacitors for high energy storing performance. We assemble Li-ion hybrid supercapacitors using activated carbon (AC) as anode material, lithium manganese oxide as cathode material, and organic electrolyte (1 mol L-1 LiPF6 in acetonitrile). At this point, the thickness of the anode electrode is controlled at 160, 200, and 240 ㎛. Also, thickness of cathode electrode is fixed at 60 ㎛. Then, the effect of negative and positive electrode ratio on the electrochemical performance of AC/LiMn2O4 Li-ion hybrid supercapacitors is investigated, especially in the terms of capacity and cyclability at high current density. In this study, we demonstrate the relationship of capacity ratio between anode and cathode electrode, and the excellent electrochemical performance of AC/LiMn2O4 Li-ion hybrid supercapacitors. The remarkable capability of these materials proves that manipulation of the capacity ratio is a promising technology for high-performance Li-ion hybrid supercapacitors.

Self-Supporting 3D-Graphene/MnO2 Composite Supercapacitors with High Stability

  • Zhaoyang Han;Sang-Hee Son
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.2
    • /
    • pp.175-185
    • /
    • 2023
  • A hybrid supercapacitor is a promising energy storage device in view of its excellent capacitive performance. Commercial three-dimensional foam nickel (Ni) can be used as an ideal framework due to an interconnected network structure. However, its application as an electrode material for supercapacitors is limited due to its low specific capacity. Herein, we report a successful growth of MnO2 on the surface of graphene by a one-step hydrothermal method; thus, forming a three-dimensional MnO2-graphene-Ni hybrid foam. Our results show that the mixed structure of MnO2 with nanoflowers and nanorods grown on the graphene/Ni foam as a hybrid electrode delivers the maximum specific capacitance of 193 F·g-1 at a current density 0.1 A·g-1. More importantly, the hybrid electrode retains 104% of its initial capacitance after 1,000 charge-discharge cycles at 1 A·g-1; thus, showing the potential application as a stable supercapacitor electrode.

Experimental Characteristics Examination of a Hybrid-Type Supercapacitor (하이브리드형 슈퍼커패시터의 실험적 특성 규명)

  • Jeong, Kyuwon;Shin, Jaeyoul
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.4
    • /
    • pp.307-311
    • /
    • 2016
  • Several types of supercapacitors have been developed for energy storage systems. Among them, the hybrid type has advantages such as a large capacitance per weight compared with the electric double-layer capacitator type. In this study, constant current charging and discharging tests were conducted for recently developed hybrid-type supercapacitors. Based on the experimental results, the capacitance and equivalent series resistance were obtained. The capacitance was larger than the designed capacitance at a low current but became small at a high current. In addition, the capacitance depended on the cell voltage. These results can be used to design an energy storage system.

Fabrication of Boron-Doped Activated Carbon for Zinc-Ion Hybrid Supercapacitors (아연-이온 하이브리드 슈퍼커패시터를 위한 보론 도핑된 활성탄의 제조)

  • Lee, Young-Geun;Jang, Haenam;An, Geon-Hyoung
    • Korean Journal of Materials Research
    • /
    • v.30 no.9
    • /
    • pp.458-464
    • /
    • 2020
  • Zinc-ion hybrid supercapacitors (ZICs) have recently been spotlighted as energy storage devices due to their high energy and high power densities. However, despite these merits, ZICs face many challenges related to their cathode materials, activated carbon (AC). AC as a cathode material has restrictive electrical conductivity, which leads to low capacity and lifetime at high current densities. To overcome this demerit, a novel boron (B) doped AC is suggested herein with improved electrical conductivity thanks to B-doping effect. Especially, in order to optimize B-doped AC, amounts of precursors are regulated. The optimized B-doped AC electrode shows a good charge-transfer process and superior electrochemical performance, including high specific capacity of 157.4 mAh g-1 at current density of 0.5 A g-1, high-rate performance with 66.6 mAh g-1 at a current density of 10 A g-1, and remarkable, ultrafast cycling stability (90.7 % after 10,000 cycles at a current density of 5 A g-1). The superior energy storage performance is attributed to the B-doping effect, which leads to an excellent charge-transfer process of the AC cathode. Thus, our strategy can provide a rational design for ultrafast cycling stability of next-generation supercapacitors in the near future.

A Modularized Equalizer for Supercapacitor Strings in Hybrid Energy Storage Systems

  • Gao, Zhigang;Jiang, Fenlin
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1469-1482
    • /
    • 2016
  • In hybrid energy storage systems, supercapacitors are usually connected in series to meet the required voltage levels. Equalizers are effective in prolonging the life of hybrid energy storage systems because they eliminate the voltage imbalance on cells. This study proposes a modularized equalizer, which is based on a combination of a half-bridge inverter, an inductor, and two auxiliary capacitors. The proposed equalizer inherits the advantages of inductor-based equalization systems, but it also offers unique merits, such as low switching losses and an easy-to-use control algorithm. The zero-voltage switching scheme is analyzed, and the power model is established. A fixed-frequency operation strategy is proposed to simplify the control and lower the cost. The switching patterns and conditions for zero-voltage switching are discussed. Simulation results based on PSIM are presented to verify the validity of the proposed equalizer. An equalization test for two supercapacitor cells is performed. An experimental hybrid energy storage system, which consists of batteries and supercapacitors, is established to verify the performance of the proposed equalizer. The analysis, simulation results, and experimental results are in good agreement, thus indicating that the circuit is practical.

Incorporation of Manganese Oxide Nanoparticles Into Polyaniline Hollow Nanospheres and Its Application to Supercapacitors

  • Kwon, Hyemin;Ryu, Ilhwan;Han, Jiyoung;Yim, Sanggyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.295-295
    • /
    • 2013
  • Supercapacitors with higher energy and power density are attracting growing attention for their wide range of potential applications such as portable electronic equipments, hybrid vehicle and cellular devices. In various classes of materials for supercapacitors, the redox pseudocapacitive materials such as conducting polymers and metal oxides have been most widely studied recently. The nanostructuring of the electrode surface has also been focused on since it can provide large surface area and consequently easy diffusion of ions in the capacitors. Among the active materials, in this work, we have used polyaniline (PANi) and manganese oxide ($MnO_2$). PANi is one of the promising electrode and active materials due to its desirable properties such as high electrochemical activity, high doping level and stability. $MnO_2$ is also widely studied material for supercapacitors since it is relatively cheap and environmentally friendly. In this work, we fabricated PANi hollow nanospheres by polymerizing aniline monomers on the polystyrene (PS) nanospheres and then dissolving the inner PS spheres. This nanostructuring of the PANi surface can provide large surface area and hence easy diffusion of electrolyte ions. We also incorporated $MnO_2$ nanoparticles into the PANi hollow nanospheres and investigated its electrochemical properties. It is expected that the combination of these two active materials with slightly different working potential windows show synergetic effects such as broader working potential range and enhanced specific capacitance.

  • PDF

An Overview of Self-Grown Nanostructured Electrode Materials in Electrochemical Supercapacitors

  • Shinde, Nanasaheb M.;Yun, Je Moon;Mane, Rajaram S.;Mathur, Sanjay;Kim, Kwang Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.5
    • /
    • pp.407-418
    • /
    • 2018
  • Increasing demand for portable and wireless electronic devices with high power and energy densities has inspired global research to investigate, in lieu of scarce rare-earth and expensive ruthenium oxide-like materials, abundant, cheap, easily producible, and chemically stable electrode materials. Several potential electrode materials, including carbon-based materials, metal oxides, metal chalcogenides, layered metal double hydroxides, metal nitrides, metal phosphides, and metal chlorides with above requirements, have been effectively and efficiently applied in electrochemical supercapacitor energy storage devices. The synthesis of self-grown, or in-situ, nanostructured electrode materials using chemical processes is well-known, wherein the base material itself produces the required phase of the product with a unique morphology, high surface area, and moderate electrical conductivity. This comprehensive review provides in-depth information on the use of self-grown electrode materials of different morphologies in electrochemical supercapacitor applications. The present limitations and future prospects, from an industrial application perspectives, of self-grown electrode materials in enhancing energy storage capacity are briefly elaborated.

Graphene/Multi-Walled Carbon Nanotubes Hybrid Materials for Supercapacitors

  • Lee, Bo-Reum;Chang, Dong Wook
    • Clean Technology
    • /
    • v.21 no.1
    • /
    • pp.62-67
    • /
    • 2015
  • We have developed a versatile method for the preparation of chemically linked graphene/multi-walled carbon nanotubes (MWNTs) hybrid materials via simple acid-catalyzed dehydration reaction between graphene oxide (GO) and amine-functionalized MWNTs (af-MWNTs). In this condition, ketone (-C=O) groups in GO and primary amine (-NH2) moieties in af-MWNTs readily react to form imine (-C=N-) linkage. The chemical structures of graphene/MWNTs hybrid materials have been investigated using various microscopic and spectroscopic measurements. As a result of the synergetic effects of hybrid materials such as improved surface area and the superior structural restoration of graphitic networks, the hybrid materials demonstrate improved capacitance with excellent long-term stability. Furthermore, controlled experiments were conducted to optimize the weight ratio of graphene/MWNTs in hybrid materials. The highest capacitance of 132.4 F/g was obtained from the GM7.5 material, in which the weight ratio between graphene and MWNTs was adjusted to 7.5/1, in 1M KOH electrolyte at a scan rate of 100 mV/s.

The Operation Characteristics of Hybrid Supercapacitor Module for LED Emergency Luminaires (LED 비상 유도등을 위한 하이브리드 슈퍼커패시터 모듈의 동작 특성)

  • Mang, Ju-Cheul;Yoon, Jung-Rag
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.7
    • /
    • pp.473-479
    • /
    • 2015
  • Hybrid supercapacitors with high power density and long cycle life are widely used for emergency power source of LED emergency luminaires. In this paper, we designed and fabricated a hybrid capacitor cell and a module for the LED emergency luminaires. Using hybrid supercapacitor cells (1,000 F, 2.8 V), we designed a module in a 10-year warranty considering aging and ESR. Considering the ESR and efficiency has been designed to module with 1,000 F 5.6 V design results in 2 series and 2 parallel combination. Module was used to confirm that the operation 77.5 minutes at room temperature, discharge LED emergency luminaires with 2 W. As a LED emergency luminaires of emergency power supply that we can support more than 10 years of life was confirmed the applicability of hybrid supercapacitor.

Fabrication of Three-Dimensionally Arrayed Polyaniline Nanostructures

  • Gwon, Hye-Min;Ryu, Il-Hwan;Han, Ji-Yeong;Im, Sang-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.220-220
    • /
    • 2012
  • The supercapacitors with extraordinarily high capability for energy storage are attracting growing attention for their potential applications in portable electronic equipments, hybrid vehicles, cellular devices, and so on. The nanostructuring of the electrode surface can provide large surface area and consequently easy diffusion of ions in the capacitors. In addition, compared to two-dimensional nanostructures, the three-dimensional (3D) nano-architecture is expected to lead to significant enhancement of mechanical and electrical properties such as capacitance per unit area of the electrode. Polyaniline (PANi) is known as promising electrode material for supercapacitors due to its desirable properties such as high electro activity, high doping level and environmental stability. In this context, we fabricated well-ordered 3D PANi nanostructures on 3D polystyrene (PS) nanospheres which was arrayed by layer-by-layer stacking method. The height of the PANi nanostructures could be controlled by the number of PS layers stacked. 3D PANi hollow nanospheres were also fabricated by dissolving inner PS nanospheres, which resulted in further enhancement of the surface area and capacitance of the electrode.

  • PDF