• Title/Summary/Keyword: Hybrid supercapacitor

Search Result 60, Processing Time 0.023 seconds

Preparation and Characteristics of Li4Ti5O12 Anode Material for Hybrid Supercapacitor

  • Lee, Byung-Gwan;Yoon, Jung-Rag
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.207-211
    • /
    • 2012
  • Spinel-$Li_4Ti_5O_{12}$ was successfully synthesized by a solid-phase method at 800, 850, and $900^{\circ}C$ according to the $Li_4Ti_5O_{12}$ cubic spinel phase structure. To achieve higher EDLC energy density with the $Li_4Ti_5O_{12}$, the negative electrode of the hybrid supercapacitor was studied in this work. The electrochemical performances of the hybrid supercapacitor and EDLC were characterized by constant current discharge curves, c-rate, and cycle performance testing. The capacitance (1st cycle) of the hybrid supercapacitor and EDLC was 209 and 109 F, respectively, which is higher than EDLC. The capacitance of the hybrid supercapacitor decreases from 209 F to 101 F after 20 cycles when discharged at several specific current densities ranging from 1 to 10 A. In contrast, capacitance of the EDLC hardly decreases after 20 cycles. Results show that hybrid supercapacitor benefits from the high rate capability of supercapacitor and high capacity of the battery. Findings also prove that the hybrid supercapacitor is an energy storage device where the supercapacitor and the Li ion secondary battery coexist in one cell system.

The Design and Electrical Characteristics of 50kW Energy Storage System Using Hybrid Supercapacitor (하이브리드 슈퍼커패시터를 이용한 50kW급 에너지 저장 장치 설계 및 전기적 특성)

  • Mang, Ju-Cheul;Cho, Moon-Taek;Yoon, Jung-Rag
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.854-859
    • /
    • 2018
  • This paper describes the characteristics of a hybrid supercapacitor module for power quality stabilization. Hybrid supercapacitor is an promising energy storage device that positioned between conventional EDLC and Li-ion battery. A cylindrical 7500F hybrid supercapacitor ($60{\times}138mm$) was assembled by using the $Li_4Ti_5O_{12}$ electrode as an anode and activated carbon as a cathode. Considering the ESR and efficiency has been designed to module with 41.6F 480V design results in 180 series combination. In order to determine the characteristics of the hybrid supercapacitor module for power system, hybrid supercapacitor cells were connected in series with active balancing circuit. As a result of measuring the 50kw UPS, it was discharged at the current of 104A~143A during the discharge in the voltage range of 350V~480V, and the compensation time at discharge was measured to be about 30s. These results can be used to stabilization of power quality by applying hybrid supercapacitor module.

The Characteristics of Asymmetric Hybrid Supercapacitor Cells and Modules for Power Quality Stabilization (전력품질 안정화용 비대칭 하이브리드 슈퍼커패시터 셀 및 모듈 특성)

  • Lee, Byung-Gwan;Maeng, Ju-Cheul;Lee, Joung-Kyu;Yoon, Jung-Rag
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.617-621
    • /
    • 2016
  • In addition to the energy storage facilities based on high power technologies, Electric double layer capacitors(EDLC) are today's candidate for power quality stabilization. However, its low energy density is often inhibiting factor for application of electric power industry. Hybrid supercapacitor is an promising energy storage device that positioned between conventional EDLC and Li-ion battery. This paper describes the preparation and characteristics of a hybrid supercapacitor and module for power quality stabilization. A cylindrical 3200F hybrid supercapacitor ($60{\times}74.5mm$) was assembled by using the $Li_4Ti_5O_{12}$ electrode as an anode and activated carbon as a cathode. It shows 2.5 times higher energy density than conventional EDLC with the same volume. In order to determine the characteristics of the hybrid supercapacitor Module for uninterruptible power supply (UPS), hybrid supercapacitor cells were connected in series with active balancing circuit. At even the high current density of 14A(10C), Module prepared by 18 cells showed the capacitance of 170F at 30~50V, suggesting the applicability for UPS.

Power Control modeling and Simulation of Hybrid Power System for Building Microgrid Connected Application

  • Yoon, Gi-Cap;Cho, Jae-Hoon;Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.11
    • /
    • pp.84-93
    • /
    • 2009
  • In this paper, we propose to study the possibility of using a photovoltaic system combined with a high speed micro-turbine. This hybrid system can work as stand-alone system or grid connected system as it will be a part of a micro-grid. Initially, we propose Matlab/Simulink dynamic models of photovoltaic, micro turbine systems and supercapacitor. Then, we carry out a simulation comparison of the two systems, this is, with supercapacitor and without supercapacitor bank. We show that supercapacitor bank as short-term storage device was necessary to reduce the fast fluctuation of power in the case of sensitive loads. It is verified the simulation results of Matlab/Simulink based hybrid power system represent the effectiveness of the suggested hybrid power system.

The Operation Characteristics of Hybrid Supercapacitor Module for LED Emergency Luminaires (LED 비상 유도등을 위한 하이브리드 슈퍼커패시터 모듈의 동작 특성)

  • Mang, Ju-Cheul;Yoon, Jung-Rag
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.7
    • /
    • pp.473-479
    • /
    • 2015
  • Hybrid supercapacitors with high power density and long cycle life are widely used for emergency power source of LED emergency luminaires. In this paper, we designed and fabricated a hybrid capacitor cell and a module for the LED emergency luminaires. Using hybrid supercapacitor cells (1,000 F, 2.8 V), we designed a module in a 10-year warranty considering aging and ESR. Considering the ESR and efficiency has been designed to module with 1,000 F 5.6 V design results in 2 series and 2 parallel combination. Module was used to confirm that the operation 77.5 minutes at room temperature, discharge LED emergency luminaires with 2 W. As a LED emergency luminaires of emergency power supply that we can support more than 10 years of life was confirmed the applicability of hybrid supercapacitor.

Electrochemical Characteristics of Hybrid Cell Consisting of Li Secondary Battery and Supercapacitor (리튬이차전지와 슈퍼커패시터로 구성된 하이브리드 셀의 전기화학적 특성)

  • KIM1, SANGGIL;GIL, BOMIN;HWANG, GABJIN;RYU, CHEOLHWI
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.1
    • /
    • pp.43-48
    • /
    • 2019
  • This study investigates the electrochemical characteristics of the hybrid cell that combined the advantageous characteristics of Li secondary battery and supercapacitor, high energy density and high power density, respectively. Electrochemical behaviors of the hybrid cell was characterized by charge/discharge, cycle and impedance tests. The hybrid cell using Li secondary battery and supercapacitor had better discharge capacity and cycle performance than that of using Li secondary battery only. Proper design of such a hybrid cell system is expected to result in substantial benefits to the well being of the Li secondary battery. The hybrid cell involving Li secondary battery for high energy density and supercapacitor for high power density may be the possible solution for future energy storage system.

Study of Operation Strategy for Hybrid PEM Fuel Cell and Supercapacitor (고분자 전해질 연료전지와 슈퍼캐패시터 하이브리드 시스템의 운전 전략에 관한 연구)

  • Park Kwang-Jin;Ji Hyun-Jin;Bae Joong-Myeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.8 s.251
    • /
    • pp.756-763
    • /
    • 2006
  • PEMFC has several technical problems such as water management, long term stability and performance degradation as. PEMFC has been studied not only to solve water management, but also to generate power in stable manner to system by using a hybrid system with auxiliary energy storage device. The purpose of this study is to couple PEMFC with supercapacitor to make a hybrid system and to design and test control strategies for stable power generation in case of changing output power. The polarization curve and dynamic behaviors while changing power were investigated to find out characteristics of PEMFC stack. A DC/DC converter was fabricated in order to increase fuel cell and supercapacitor voltage and to charge supercapacitor. We found that the operation strategy 2 was recommended to the system because of solving water management problem and increasing the dynamic behavior.

Performance Characteristics of Li-ion Battery and Supercapacitor Hybrid Cell for High Power / Low Temperature Discharge (고출력/저온 방전을 위한 리튬전지와 슈퍼캐패시터 하이브리드 셀의 방전 거동 특성 연구)

  • Jang, Woojin;Hong, Seung-Chul;Hong, Jung-Pyo;Hwang, Taeseon;Oh, Joon-Suk;Ko, Sungyeon;Lee, Gaeun;Ahn, Kyunyoung;Kim, Hyunsoo;Suhr, Jonghwan;Nam, Jae-Do
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.49-57
    • /
    • 2013
  • In this study, we fabricated a parallelly connected Li-ion battery/supercapacitor hybrid cell to combine the advantageous characteristics of Li-ion battery and supercapacitor, high energy density and high power density, respectively, and investigated its discharging characteristics over a wide temperature range from -40 to $25^{\circ}C$. At the initial state of discharging of the hybrid cell, the power was mostly provided by the supercapacitor and then the portion of the Li-ion battery was gradually increased. By installing a switching system into the hybrid cell, which controls the discharging sequence of Li-ion battery and supercapacitor, the maximum power was improved by 40% compared with non switching system. In addition at low temperatures, the power and discharging time of the hybrid cell were significantly enhanced compared to a battery-alone system. The hybrid cell is expected to be applied in electric vehicles and small domestic appliances that require high power at initial discharging state.

The Electric Characteristics of Asymmetric Hybrid Supercapacitor Modules with Li4Ti5O11 Electrode (Li4Ti5O11 전극을 이용한 비대칭 하이브리드 슈퍼커패시터 전기적 모듈 특성)

  • Maeng, Ju-Cheul;Yoon, Jung-Rag
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.357-362
    • /
    • 2017
  • Among the lithium metal oxides for asymmetric hybrid supercapacitor, $Li_4Ti_5O_{12}(LTO)$ is an emerging electrode material as zero-stain material in volume change during the with the charging and discharging processes. The pulverized LTO powder was observed to show the enhanced capacity from 120 mAh/g to 156 mAh/g at C-rate (10, 100 C). Hybrid supercapacitor module(48V, 416F) was fabricated using an asymmetric hybrid capacitor with a capacitance of 7500F. As a result of the measurement of C-rate characteristics, the module shows that the discharge time is drastically reduced at more than 50C, and the ESR and voltage drop characteristics are increased. The energy density and power density were reduced under high C-rate conditions. When designing asymmetric hybrid supercapacitor module, the C-rate and ESR should be considered As a result of measuring the 5 kw UPS, it was discharged at the current of 116A~170A during the discharge in the voltage range of 48V~30V, and the compensation time at discharge was measured to be about 33.2s. Experimental results show that it can be applied to applications related to stabilization of power quality by applying hybrid supercapacitor module.