• 제목/요약/키워드: Hybrid strategy

검색결과 480건 처리시간 0.022초

Grid Independent Photovoltaic Fuel-Cell Hybrid System: Design and Control Strategy

  • Islam Saiful;Belmans Ronnie
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권4호
    • /
    • pp.399-404
    • /
    • 2005
  • In this paper, a hybrid photovoltaic fuel-cell generation system employing an electrolyzer for hydrogen generation and battery for storage purpose is designed and simulated. The system is applicable for remote areas or isolated DC loads. Control strategy has been considered to achieve permanent power supply to the load via the photovoltaic/battery or the fuel cell based on the power available from the sun. MATLAB and SIMULINK have been used for the simulation work. A sensitivity analysis is conducted for various load level based on availability of solar radiation.

연료전지 하이브리드 자동차에 대한 퍼지논리 기반 에너지 운용전략 (Fuzzy Logic-Based Energy Management Strategy for FCHEVs)

  • 안현식;이남수
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제54권12호
    • /
    • pp.713-715
    • /
    • 2005
  • The work in this paper presents development of fuzzy logic-based energy management strategy for a fuel cell hybrid electric vehicle. In order for the fuel cell system to overcome the inherent limitation such as slow response time and low fuel economy especially at the low power region, the battery system has come to compensate for the fuel cell system. This type of hybrid configuration has many advantages, however, the energy management strategy between power sources is essentially required. For the optimal power distribution between the fuel cell system and the battery system, a fuzzy logic-based energy management strategy is proposed. In order to show the validity and the robustness of suggested strategy, some simulations are performed for the standard drive cycles.

A Study on Optimal Operation Strategy for Mild Hybrid Electric Vehicle Based on Hybrid Energy Storage System

  • Bae, SunHo;Park, Jung-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.631-636
    • /
    • 2018
  • This paper proposed an optimal operation strategy for a hybrid energy storage system (HESS) with a lithium-ion battery and lead-acid battery for mild hybrid electric vehicles (mild HEVs). The proposed mild HEV system is targeted to mount the electric motor and the battery to a conventional internal combustion engine vehicle. Because the proposed mild HEV includes the motor and energy storage device of small capacity, the system focuses on low system cost and small size. To overcome these limitations, it is necessary to use a lead acid battery which is used for a vehicle. Thus, it is possible to use more energy using HESS with a lithium battery and a lead storage battery. The HESS, which combines the lithium-ion battery and the secondary battery in parallel, can achieve better performance by using the two types of energy storage systems with different characteristics. However, the system requires an operation strategy because accurate and selective control of the batteries for each situation is necessary. In this paper, an optimal operation strategy is proposed considering characteristics of each energy storage system, state-of-charge (SOC), bidirectional converters, the desired output power, and driving conditions in the mild HEV system. The performance of the proposed system is evaluated through several case studies with respect to energy capacity, SOC, battery characteristic, and system efficiency.

FUEL ECONOMY IMPROVEMENT FOR FUEL CELL HYBRID ELECTRIC VEHICLES USING FUZZY LOGIC-BASED POWER DISTRIBUTION CONTROL

  • Ahn, H.S.;Lee, N.S.;Moon, C.W.;Jeong, G.M.
    • International Journal of Automotive Technology
    • /
    • 제8권5호
    • /
    • pp.651-658
    • /
    • 2007
  • This paper presents a new type of fuzzy logic-based power control strategy for fuel cell hybrid electric vehicles designed to improve their fuel economy while maintaining the battery's state of charge. Since fuel cell systems have inherent limitations, such as a slow response time and low fuel efficiency, especially in the low power region, a battery system is typically used to assist them. To maximize the advantages of this hybrid type of configuration, a power distribution control strategy is required for the two power sources: the fuel cell system and the battery system. The required fuel cell power is procured using fuzzy rules based on the vehicle driving status and the battery status. In order to show the validity and effectiveness of the proposed power control strategy, simulations are performed using a mid-size vehicle for three types of standard drive cycle. First, the fuzzy logic-based power control strategy is shown to improves the fuel economy compared with the static power control strategy. Second, the robustness of the proposed power control strategy is verified against several variations in system parameters.

Multimode Hybrid Control Strategy of LLC Resonant Converter in Applications with Wide Input Voltage Range

  • Li, Yan;Zhang, Kun;Yang, Shuaifei
    • Journal of Power Electronics
    • /
    • 제19권1호
    • /
    • pp.201-210
    • /
    • 2019
  • This paper proposes a multimode hybrid control strategy that can achieve zero-voltage switching of primary switches and zero-current switching of secondary rectifier diodes in a wide input voltage range for full-bridge LLC resonant converters. When the input voltage is lower than the rated voltage, the converter operates in Mode 1 through the variable-frequency control strategy. When the input voltage is higher than the rated voltage, the converter operates in Mode 2 through the VF and phase-shift control strategy until the switching frequency reaches the upper limit. Then, the converter operates in Mode 3 through the constant-frequency and phase-shift control strategy. The secondary-side diode current will operate in the discontinuous current mode in Modes 1 and 3, whereas it will operate in the boundary current mode in Mode 2. The current RMS value and conduction loss can be reduced in Mode 2. A detailed theoretical analysis of the operation principle, the voltage gain characteristics, and the realization method is presented in this paper. Finally, a 500 W prototype with 100-200 V input voltage and 40 V output voltage is built to verify the feasibility of the multimode hybrid control strategy.

4kW급 연료전지 하이브리드 자동차 개발을 위한 시스템 동특성 연구 (Study on system dynamic behaviors for 4kW-class fuel cell hybrid vehicle)

  • 이동율;박광진;배중면;정재화;지현진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.93-96
    • /
    • 2006
  • PEMFC(proton exchange membrane fuel cell) is most applicable to automobile in various types of fuel cell. However, to improve system dynamics and logn term Performance fuel cell is supported by auxiliary power unit forming hybrid system. The operating strategy of hybrid system influences on efficiency and stability. In this paper the proper strategies are compared each other considering power distribution and stable system operation. The chosen strategy is simulated by MATLAB simulink to forecast realization of fuel cell hybrid vehicle

  • PDF

Cytomegalovirus Infection under a Hybrid Strategy in Pediatric Liver Transplantation: A Single-Center Experience

  • Kim, Ryung;Joung, Dai;Lee, Sunghee;Jeong, Insook;Oh, Seak Hee;Namgoong, Jung-Man;Kim, Dae Yeon;Kim, Kyung Mo
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • 제20권3호
    • /
    • pp.178-185
    • /
    • 2017
  • Purpose: To evaluate the outcomes of a hybrid prophylactic strategy to prevent cytomegalovirus (CMV) disease in pediatric liver transplantation (LT) patients. Methods: CMV DNAemia was regularly monitored by quantitative nucleic acid amplification test (QNAT) and was quantified in all children. CMV infection and disease were defined according to the International Consensus Guidelines. The hybrid strategy against CMV infection consisted of universal 3-week prophylaxis and preemptive treatment of intravenous ganciclovir regardless of the recipient's serostatus. Results: A total of 143 children who underwent living donor LT were managed using the hybrid strategy. The overall incidence of CMV infection by QNAT was 48.3% (n=69/143). The highest CMV DNAemia positivity was observed in 49.2% (n=60/122) of children in the D+/R+ group, followed by 46.7% (n=7/15) in the D+/R- group. CMV disease was noted in 26.1% (n=18/69) patients. Forty-three (62.3%) children had undergone preemptive therapy consisting of intravenous ganciclovir. No symptomatic patients developed tissue-invasive disease, resulting in no CMV-associated mortality. Conclusion: The incidence of CMV infection was high in pediatric LT patients despite the hybrid strategy. However, tissue-invasive disease in pediatric LT did not occur.

점집합을 개체로 이용한 직각거리 스타이너 나무 문제의 하이브리드 진화 전략에 관한 연구 (A Nodes Set Based Hybrid Evolutionary Strategy on the Rectilinear Steiner Tree Problem)

  • 양병학
    • 경영과학
    • /
    • 제23권1호
    • /
    • pp.75-85
    • /
    • 2006
  • The rectilinear Steiner tree problem (RSTP) is to find a minimum-length rectilinear interconnection of a set of terminals in the plane. It is well known that the solution to this problem will be the minimal spanning tree(MST) on some set Steiner points. The RSTP is known to be NP-complete. The RSTP has received a lot of attention in the literature and heuristic and optimal algorithms have been proposed. A key performance measure of the algorithm for the RSTP is the reduction rate that is achieved by the difference between the objective value of the RSTP and that of the MST without Steiner points. A hybrid evolutionary strategy on RSTP based upon nodes set is presented. The computational results show that the hybrid evolutionary strategy is better than the previously proposed other heuristic. The average reduction rate of solutions from the evolutionary strategy is about 11.14%, which is almost similar to that of optimal solutions.

Performance validation and application of a mixed force-displacement loading strategy for bi-directional hybrid simulation

  • Wang, Zhen;Tan, Qiyang;Shi, Pengfei;Yang, Ge;Zhu, Siyu;Xu, Guoshan;Wu, Bin;Sun, Jianyun
    • Smart Structures and Systems
    • /
    • 제26권3호
    • /
    • pp.373-390
    • /
    • 2020
  • Hybrid simulation (HS) is a versatile tool for structural performance evaluation under dynamic loads. Although real structural responses are often multiple-directional owing to an eccentric mass/stiffness of the structure and/or excitations not along structural major axes, few HS in this field takes into account structural responses in multiple directions. Multi-directional loading is more challenging than uni-directional loading as there is a nonlinear transformation between actuator and specimen coordinate systems, increasing the difficulty of suppressing loading error. Moreover, redundant actuators may exist in multi-directional hybrid simulations of large-scale structures, which requires the loading strategy to contain ineffective loading of multiple actuators. To address these issues, lately a new strategy was conceived for accurate reproduction of desired displacements in bi-directional hybrid simulations (BHS), which is characterized in two features, i.e., iterative displacement command updating based on the Jacobian matrix considering nonlinear geometric relationships, and force-based control for compensating ineffective forces of redundant actuators. This paper performs performance validation and application of this new mixed loading strategy. In particular, virtual BHS considering linear and nonlinear specimen models, and the diversity of actuator properties were carried out. A validation test was implemented with a steel frame specimen. A real application of this strategy to BHS on a full-scale 2-story frame specimen was performed. Studies showed that this strategy exhibited excellent tracking performance for the measured displacements of the control point and remarkable compensation for ineffective forces of the redundant actuator. This strategy was demonstrated to be capable of accurately and effectively reproducing the desired displacements in large-scale BHS.

경전철용 연료전지 하이브리드 동력시스템 설계 및 제어 (Design and Control Strategy of Fuel Cell Hybrid Power System for Light Electric Railway Vehicles)

  • 김영렬;박영원
    • 한국철도학회논문집
    • /
    • 제12권5호
    • /
    • pp.772-777
    • /
    • 2009
  • 지구 온난화를 경감 하기위한 차세대 동력시스템으로서 연료전지 동력시스템은 승용차를 중심으로 활발하게 개발되고 있다. 가선이 설치되어있지 않은 철로에서의 철도차량의 경우에 있어서도 연료전지 동력시스템의 적용이 선진 각국을 중심으로 연구개발 되고 있다. 본 논문에서는 가속, 타행주행 및 감속을 반복하여 주행하는 경전철에 대하여 연료전지 하이브리드 동력시스템을 적용하고자 할 때 이에 대한 설계 및 제어전략을 논하였고, Matlab/Simulink로 모델링하여 시뮬레이션을 수행하였다.