• 제목/요약/키워드: Hybrid strategy

검색결과 480건 처리시간 0.028초

Road-friendliness of Fuzzy Hybrid Control Strategy Based on Hardware-in-the-Loop Simulations

  • Yan, Tian Yi;Li, Qiang;Ren, Kun Ru;Wang, Yu Lin;Zhang, Lu Zou
    • Journal of Biosystems Engineering
    • /
    • 제37권3호
    • /
    • pp.148-154
    • /
    • 2012
  • Purpose: In order to improve road-friendliness of heavy vehicles, a fuzzy hybrid control strategy consisting of a hybrid control strategy and a fuzzy logic control module is proposed. The performance of the proposed strategy should be effectively evaluated using a hardware-in-the-loop (HIL) simulation model of a semi-active suspension system based on the fuzzy hybrid control strategy prior to real vehicle implementations. Methods: A hardware-in-the-loop (HIL) simulation system was synthesized by utilizing a self-developed electronic control unit (ECU), a PCI-1711 multi-functional data acquisition board as well as the previously developed quarter-car simulation model. Road-friendliness of a semi-active suspension system controlled by the proposed control strategy was simulated via the HIL system using Dynamic Load Coefficient (DLC) and Dynamic Load Stress Factor (DLSF) criteria. Results: Compared to a passive suspension, a semi-active suspension system based on the fuzzy hybrid control strategy reduced the DLC and DLSF values. Conclusions: The proposed control strategy of semi-active suspension systems can be employed to improve road-friendliness of road vehicles.

직렬형 플러그인 하이브리드 전기 버스의 엔진 구동 전략에 따른 시뮬레이션 기반 연비 분석 (Analysis of Fuel Economy for Series Plug-in Hybrid Electric Bus according to Engine Operation Strategy Based on Simulation)

  • 김진성;이치범;박영일
    • 한국자동차공학회논문집
    • /
    • 제22권5호
    • /
    • pp.102-107
    • /
    • 2014
  • Because of high oil prices and emission gas problems, many governments tighten regulation of fuel economy and emission gas. For Passenger car, there are many researches for plug-in hybrid electric vehicles and they are being manufactured. On the other hand, there are few researches for plug-in hybrid electric bus that is heavy commercial vehicle. In this study, analysis of fuel economy for series plug-in hybrid electric bus according to engine operation strategy based on simulation is conducted. Forward simulator is developed using Autonomie. Engine operation strategies consist on constant engine operation strategy and engine on/off operation strategy. Considering the engine operation strategy, results of vehicle speed, engine operating points and fuel economy are obtained and analyzed. As a result, engine on/off operation strategy has more advantage than constant engine operation strategy in terms of fuel economy.

OPTIMAL TORQUE MANAGEMENT STRATEGY FOR A PARALLEL HYDRAULIC HYBRID VEHICLE

  • Sun, H.;Jiang, J.H.;Wang, X.
    • International Journal of Automotive Technology
    • /
    • 제8권6호
    • /
    • pp.791-798
    • /
    • 2007
  • The hydraulic hybrid vehicle(HHV) is an application of hydrostatic transmission technology to improve vehicle fuel economy and emissions. A relatively lower energy density of hydraulic accumulator and complicated coordinating operations between two power sources require a special energy management strategy to maximize the fuel saving potential. This paper presents a new type of configuration for parallel HHV to minimize the disadvantages of the hydraulic accumulator, as well as a methodology for developing an energy management strategy tailored specially for PHHV. Based on an analysis of the optimal energy distribution between two power sources over a representative urban driving cycle with a Dynamic Programming(DP) algorithm, a fuzzy-based optimal torque management strategy is designed and developed to control the torque distribution. Simulation results demonstrates that the optimal torque management strategy maximizes the advantages of this hybrid type of configuration, and the high power density characteristics of hydraulic technology effectively improve the robustness of the energy management strategy and fuel economy of the PHHV.

동력 추적 기법을 활용한 직렬형 유압 하이브리드 차량의 제어 방식에 관한 연구 (A study on the control of series hydraulic hybrid vehicle using power follower strategy)

  • 권우상;오주영;송창섭
    • 유공압시스템학회:학술대회논문집
    • /
    • 유공압시스템학회 2010년도 춘계학술대회
    • /
    • pp.49-55
    • /
    • 2010
  • A series hydraulic hybrid vehicle(SHHV) concept has been explored as a potential pathway to an ultra-efficient city vehicle. Improvements in SHHV fuel economy with reduced emissions strongly depend on their supervisory control strategy. Thermostatic control is simple and reliable but it's cause of frequent engine on-off. Therefore, power follower strategy is presented. In this paper, thermostatic control strategy and power follower strategy is compared for the SHHV model developed using AMESim.

  • PDF

Parametric investigation of a hybrid vehicle's achievable fuel economy with optimization based energy management strategy

  • Amini, Ali;Baslamisli, S. Caglar;Ince, Bayramcan;Koprubasi, Kerem;Solmaz, Selim
    • Advances in Automotive Engineering
    • /
    • 제1권1호
    • /
    • pp.105-121
    • /
    • 2018
  • The hybrid electric powertrain is a robust solution that allows for major improvements in both fuel economy and emission reduction. In the present study, a through-the-road hybrid vehicle model with an electric motor driving the rear axle and an Internal Combustion Engine (ICE) driving the front axle has been constructed. We then present a systematic method for the determination of a real time applicable optimal Energy Management Strategy (EMS) for a hybrid road vehicle. More precisely, we compare the performance of rule-based EMS strategies to an optimization-based strategy, namely ECMS (Equivalent Consumption Minimization Strategy). The comparison is conducted in parallel with a parameterization of the size of the internal combustion engine and the implementation of a Continuously Variable Transmission (CVT) that allows following the line of best fuel economy. For the FTP-75 driving cycle, the constrained engine On-off control algorithm is shown to offer a 28% improvement potential of fuel consumption compared to the conventional internal combustion engine while the ECMS strategy achieves an improved potential of nearly 33%.

복합제어기법을 이용한 지진하중을 받는 사장교의 제어 (Control of a Seismically Excited Cable-Stayed Bridge Employing a Hybrid Control Strategy)

  • 박규식;정형조;이종헌;이인원
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.338-345
    • /
    • 2002
  • This paper presents a hybrid control strategy for seismic protection of a benchmark cable-stayed bridge, which is provided as a testbed structure for the development of strategies for the control of cable-stayed bridges. In this study, a hybrid control system is composed of a passive control system to reduce the earthquake-induced forces in the structure and an active control system to further reduce the bridge responses, especially deck displacements. Lead rubber bearings and ideal hydraulic actuators are used fur the passive and active control systems. Bouc-Wen model is used to simulate the nonlinear behavior of lead rubber bearings and an H₂/LQG control algorithm is adopted as an active control algorithm. Numerical simulation results show that the performance of the proposed hybrid control strategy is superior to that of the passive control strategy and slightly better than that of the active control strategy. The proposed control method is also more reliable than the fully active control method due to the passive control part. Therefore, the proposed hybrid control strategy can effectively be used to seismically excited cable-stayed bridges.

  • PDF

연료전지 하이브리드 자동차의 에너지 운용전략에 관한 기술조사 (Survey on Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles)

  • 이남수;정구민;안현식;김도현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.511-513
    • /
    • 2005
  • The fuel cell system has inherent limitation such as slow response time and low fuel economy especially at the low power region, and thus, the battery system has come to be used to compensate for the fuel cell system. This type of hybrid configuration has many advantages, however, the energy management strategy is essentially required. The work in this paper presents survey on recent power management strategies for fuel cell hybrid electric vehicles. For three power management strategies: basic control method. object function-based control method, and fuzzy logic-based control method. each strategy is reviewed and discussed with other strategy.

  • PDF

FUZZY TORQUE CONTROL STRATEGY FOR PARALLEL HYBRID ELECTRIC VEHICLES

  • PU J.-H.;YIN C.-L.;ZHANG J.-W.
    • International Journal of Automotive Technology
    • /
    • 제6권5호
    • /
    • pp.529-536
    • /
    • 2005
  • This paper presents a novel design of a fuzzy control strategy (FCS) based on torque distribution for parallel hybrid electric vehicles (HEVs). An empirical load-regulating vehicle operation strategy is developed on the basis of analysis of the components efficiency map data and the overall energy conversion efficiency. The aim of the strategy is to optimize the fuel economy and balance the battery state-of-charge (SOC), while satisfying the vehicle performance and drivability requirements. In order to accomplish this strategy, a fuzzy inference engine with a rule-base extracted from the empirical strategy is designed, which works as the kernel of a fuzzy torque distribution controller to determine the optimal distribution of the driver torque request between the engine and the motor. Simulation results reveal that compared with the conventional strategy which uses precise threshold parameters the proposed FCS improves fuel economy as well as maintains better battery SOC within its operation range.

Improved Control Strategy Based on Space Vectors for Suppressing Grid-Side Current Harmonics in Three-Phase Current Source Rectifiers with a Hybrid Switch

  • Xu, Yan;Lu, Guang-Xiang;Jiang, Li-Jie;Yi, Gui-Ping
    • Journal of Power Electronics
    • /
    • 제15권2호
    • /
    • pp.497-503
    • /
    • 2015
  • This paper analyses the harmonic pollution to power grids caused by several high-power rectifiers, summarizes the requirements for rectifiers in suppressing grid-side current harmonics and optimizes a new-type of current source PWM rectifier with a hybrid switch. The rectifier with a hybrid switch boasts significant current characteristics and cost advantages in the high-power area. To further enhance the working frequency of the current source rectifier with a hybrid switch for suppressing grid-side harmonics and reducing the inductance size, this paper proposes an optimal control strategy based on space vector. It also verifies that the optimal control strategy based on space vector can reduce the total harmonic distortion of the grid-side current of the rectifier with a hybrid switch via circuit simulation and experimental results.

A Hybrid Modulation Strategy with Reduced Switching Losses and Neutral Point Potential Balance for Three-Level NPC Inverter

  • Jiang, Weidong;Gao, Yan;Wang, Jinping;Wang, Lei
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.738-750
    • /
    • 2017
  • In this paper, carrier-based pulse width modulation (CBPWM), space vector PWM (SVPWM) and reduced switching losses PWM (RSLPWM) for the three-level neutral point clamped (NPC) inverter are introduced. In the case of the neutral point (NP) potential (NPP) offset, an asymmetric disposition PWM (ASPDPWM) strategy is proposed, which can output PWM sequences correctly and suppress the lower order harmonics of the inverter effectively. An NPP balance strategy based on carrier based PWM (CBPWM) is analyzed. A hybrid modulation strategy combining RSLPWM and the NPP balance based on CBPWM is proposed, and hysteresis control is adopted to switch between the two modulation strategies. An experimental prototype of the three-level NPC inverter is built. The effectiveness of the hybrid modulation is verified with a resistance-inductance load and a permanent magnetic synchronous motor (PMSM) load, respectively. The experimental results show that reduced switching losses and an acceptable NPP can be effectively achieved in the hybrid modulation strategy.