• Title/Summary/Keyword: Hybrid solar cell

Search Result 134, Processing Time 0.019 seconds

A Study on Power Trading Methods for in a Hydrogen Residential Model (수소주거모델의 전력 거래 참여 방안 고찰)

  • KISEOK JEONG;TAEYOUNG JYUNG
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.2
    • /
    • pp.91-99
    • /
    • 2023
  • Participation in power trading using surplus power is considered a business model active in the domestic energy trade market, but it is limited only if the legal requirements according to the type, capacity, and use of the facilities to be applied for are satisfied. The hydrogen residential demonstration model presented in this paper includes solar power, energy storage system (ESS), fuel cell, and water electrolysis facilities in electrical facilities for private use with low-voltage power receiving system. The concept of operations strategy for this model focuses on securing the energy self-sufficiency ratio of the entire system, securing economic feasibility through the optimal operation module installed in the energy management system (EMS), and securing the stability of the internal power balancing issue during the stand-alone mode. An electric facility configuration method of a hydrogen residential complex demonstrated to achieve this operational goal has a structure in which individual energy sources are electrically connected to the main bus, and ESS is also directly connected to the main bus instead of a renewable connection type to perform charging/discharging operation for energy balancing management in the complex. If surplus power exists after scheduling, participation in power trading through reverse transmission parallel operation can be considered to solve the energy balancing problem and ensure profitability. Consequentially, this paper reviews the legal regulations on participation in electric power trading using surplus power from hydrogen residential models that can produce and consume power, gas, and thermal energy including hybrid distributed power sources, and suggests action plans.

Preparationand Characterization of Rutile-anatase Hybrid TiO2 Thin Film by Hydrothermal Synthesis

  • Kwon, Soon Jin;Song, Hoon Sub;Im, Hyo Been;Nam, Jung Eun;Kang, Jin Kyu;Hwang, Taek Sung;Yi, Kwang Bok
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.306-313
    • /
    • 2014
  • Nanoporous $TiO_2$ films are commonly used as working electrodes in dye-sensitized solar cells (DSSCs). So far, there have been attempts to synthesize films with various $TiO_2$ nanostructures to increase the power-conversion efficiency. In this work, vertically aligned rutile $TiO_2$ nanorods were grown on fluorinated tin oxide (FTO) glass by hydrothermal synthesis, followed by deposition of an anatase $TiO_2$ film. This new method of anatase $TiO_2$ growth avoided the use of a seed layer that is usually required in hydrothermal synthesis of $TiO_2$ electrodes. The dense anatase $TiO_2$ layer was designed to behave as the electron-generating layer, while the less dense rutile nanorods acted as electron-transfer pathwaysto the FTO glass. In order to facilitate the electron transfer, the rutile phase nanorods were treated with a $TiCl_4$ solution so that the nanorods were coated with the anatase $TiO_2$ film after heat treatment. Compared to the electrode consisting of only rutile $TiO_2$, the power-conversion efficiency of the rutile-anatase hybrid $TiO_2$ electrode was found to be much higher. The total thickness of the rutile-anatase hybrid $TiO_2$ structures were around $4.5-5.0{\mu}m$, and the highest power efficiency of the cell assembled with the structured $TiO_2$ electrode was around 3.94%.

Graphene Quantum Dot Interfacial Layer for Organic/Inorganic Hybrid Photovoltaics Prepared by a Facile Solution Process (용액 공정을 통한 그래핀 양자점 삽입형 유/무기 하이브리드 태양전지 제작)

  • Kim, Youngjun;Park, Byoungnam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.646-651
    • /
    • 2018
  • This paper reports that the electronic properties at a $P3HT/TiO_2$ interface associated with exciton dissociation and transport can be tailored by the insertion of a graphene quantum dot (GQD) layer. For donor/acceptor interface modification in an $ITO/TiO_2/P3HT/Al$ photovoltaic (PV) device, a continuous GQD film was prepared by a sonication treatment in solution that simplifies the conventional processes, including laser fragmentation and hydrothermal treatment, which limits a variety of component layers and involves low cost processing. The high conductivity and favorable energy alignment for exciton dissociation of the GQD layer increased the fill factor and short circuit current. The origin of the improved parameters is discussed in terms of the broad light absorption and enhanced interfacial carrier transport.

A Development of Green Transportation Design for Special Identity of Jecheon Area - centered on Exterior Design for Development of Design Business - (제천지역의 특성화를 위한 친환경운송수단 디자인개발 - 디자인비즈니스 개발을 위한 익스테리어 디자인을 중심으로 -)

  • Mun Keum-Hi
    • Archives of design research
    • /
    • v.19 no.4 s.66
    • /
    • pp.175-186
    • /
    • 2006
  • In the 21C, each nation controls exhaust fumes from automobiles and makes an effort to develop alternative energy because of serious environmental problem. Jechon area has many historical and cultural archeological sites. And Jechon city sponsors various cultural events. But the way of transportation which is connected with Jecheon and around sightseeing places is general and not ready yet. Therefore, if a special means of vehicle is developed, it could play an another role of sightseeing resources. Special identity of Jecheon area for establishment of green vehicle traffic system which gives Jecheon area specific character was investigated for theoretical background. Traffic system was studied for establishment of direction through existent successful case study. Moreover content, method, structure and advantage & shortcoming etc. of vehicle that use green energy resource such as solar car, fuel cell car, hybrid car, natural gas car etc. were examined. The suitable means of vehicle for Jechon area was proposed to three directions with research and investigation. After comparison and investigation by inquiry of each section's experts, the most suitable traffic system of which energy resource of car, form of vehicles, the complement, dimension of vehicles etc. were decided. Design proposal should be drawn according to process of automobile design in decided direction. Special Exterior design of vehicle that use green energy resource connecting Jecheon and around area should be suggested in Jecheon City Hall and Chungchong-bukdo provincial office for vivify image of cleanliness area.

  • PDF