• Title/Summary/Keyword: Hybrid simulation

Search Result 1,865, Processing Time 0.026 seconds

Routing for Enhancing Source-Location Privacy in Wireless Sensor Networks of Multiple Assets

  • Tscha, Yeong-Hwan
    • Journal of Communications and Networks
    • /
    • v.11 no.6
    • /
    • pp.589-598
    • /
    • 2009
  • In wireless sensor networks, a node that reports information gathered from adjacent assets should relay packets appropriately so that its location context is kept private, and thereby helping ensure the security of the assets that are being monitored. Unfortunately, existing routing methods that counter the local eavesdropping-based tracing deal with a single asset, and most of them suffer from the packet-delivery latency as they prefer to take a separate path of many hops for each packet being sent. In this paper, we propose a routing method, greedy perimeter stateless routing-based source-location privacy with crew size w (GSLP-w), that enhances location privacy of the packet-originating node (i.e., active source) in the presence of multiple assets. GSLP-w is a hybrid method, in which the next-hop node is chosen in one of four modes, namely greedy, random, perimeter, and retreat modes. Random forwarding brings the path diversity, while greedy forwarding refrains from taking an excessively long path and leads to convergence to the destination. Perimeter routing makes detours that avoid the nodes near assets so that they cannot be located by an adversary tracing up the route path. We study the performance of GSLP-w with respect to crew size w (the number of packets being sent per path) and the number of sources. GSLP-w is compared with phantom routing-single path (PR-SP), which is a notable routing method for source-location privacy and our simulation results show that improvements from the point of the ratio of safety period and delivery latency become significant as the number of source nodes increases.

Analysis of Unsteady Blade Forces in a Vertical-axis Small Wind Turbine (수직형 소형풍력터빈의 비정상 익력 평가)

  • LEE, SANG-MOON;KIM, CHUL-KYU;JEON, SEOK-YUN;ALI, SAJID;JANG, CHOON-MAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.2
    • /
    • pp.197-204
    • /
    • 2018
  • In the present study, unsteady flow analysis has been conducted to investigate the blade forces and wake flow around a hybrid street-lamp having a vertical-axis small wind turbine and a photovoltaic panel. Uniform velocities of 3, 5 and 7 m/s are applied as inlet boundary condition. Relatively large vortex shedding is formed at the wake region of the photovoltaic panel, which affects the increase of blade torque and wake flow downstream of the wind turbine. It is found that blade force has a good relation to the variation of the angle of attack with the rotation of turbine blades. Variations in the torque on the turbine blade over time create a cyclic fluctuation, which can be a source of turbine vibration and noise. Unsteady fluctuation of blade forces is also analyzed to understand the nature of the vibration of a small wind turbine over time. The detailed flow field inside the turbine blades is analyzed and discussed.

Improved Detecting Schemes for Micro-Electronic Devices Based on Adaptive Hybrid Classification Algorithms (적응형 복합 분류 알고리즘을 이용한 초소형 전자소자 탐지 향상 기법)

  • Kim, Kwangyul;Lim, Jeonghwan;Kim, Songkang;Cho, Junkyung;Shin, Yoan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.6
    • /
    • pp.504-511
    • /
    • 2013
  • This paper proposes improved detection schemes for concealed micro-electronic devices using clustering and classification of radio frequency harmonics in order to protect intellectual property rights. In general, if a radio wave with a specific fundamental frequency is propagated from the transmitter of a classifier to a concealed object, the second and the third harmonics will be returned as the radio wave is reflected. Using this principle, we exploit the fuzzy c-means clustering and the ${\kappa}$-nearest neighbor classification for detecting diverse concealed objects. Simulation results indicate that the proposed scheme can detect electronic devices and metal devices in various learning environments by efficient classification. Thus, the proposed schemes can be utilized as an effective detection method for concealed micro-electronic device to protect intellectual property rights.

A Flipflop with Improved Noise Immunity (노이즈 면역을 향상시킨 플립플롭)

  • Kim, Ah-Reum;Kim, Sun-Kwon;Lee, Hyun-Joong;Kim, Su-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.8
    • /
    • pp.10-17
    • /
    • 2011
  • As the data path of the processor widens and the depth of the pipeline deepens, the number of required registers increases. Consequently, careful attention must be paid to the design of clocked storage elements like latches and flipflops as they have a significant bearing on the overall performance of a synchronous VLSI circuit. As technology is also scaling down, noise immunity is becoming an important factor. In this paper, we present a new flipflop which has an improved noise immunity when compared to the hybrid latch flipflop and the conditional precharge flipflop. Simulation results in 65nm CMOS technology with 1.2V supply voltage are used to demonstrate the effectiveness of the proposed flipflop structure.

Analysis of Symmetric and Asymmetric Multiple Coupled Line on the Multi-layer Substrate (다층 기판위의 대칭 및 비대칭의 다중 결합선로에 대한 해석)

  • Kim, Yoonsuk;Kim, Minsu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.16-22
    • /
    • 2013
  • A general characterization procedure based on the extraction of a 2n-port admittance matrix corresponding to n uniform coupled lines on the multi-layered substrate using the Finite-Difference Time-Domain (FDTD) technique is presented. In this paper, the frequency-dependent normal mode parameters are obtained from the 2n-port admittance matrix to analyze multi-layered asymmetric coupled line structure, which in turn provides the frequency-dependent propagation constant, effective dielectric constant, and line-mode characteristic impedances. To illustrate the technique, several practical coupled line structures on multi-layered substrate have been simulated. Especially, embedded conductor structures have been simulated. Comparisons with Spectral Domain Method are given, and their results agree well. It is shown that the FDTD based time domain characterization procedure is an excellent broadband simulation tool for the design of multiconductor coupled lines on multilayered PCBs as well as thick or thin hybrid structures.

An Efficient Traning of Multilayer Neural Newtorks Using Stochastic Approximation and Conjugate Gradient Method (확률적 근사법과 공액기울기법을 이용한 다층신경망의 효율적인 학습)

  • 조용현
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.5
    • /
    • pp.98-106
    • /
    • 1998
  • This paper proposes an efficient learning algorithm for improving the training performance of the neural network. The proposed method improves the training performance by applying the backpropagation algorithm of a global optimization method which is a hybrid of a stochastic approximation and a conjugate gradient method. The approximate initial point for f a ~gtl obal optimization is estimated first by applying the stochastic approximation, and then the conjugate gradient method, which is the fast gradient descent method, is applied for a high speed optimization. The proposed method has been applied to the parity checking and the pattern classification, and the simulation results show that the performance of the proposed method is superior to those of the conventional backpropagation and the backpropagation algorithm which is a hyhrid of the stochastic approximation and steepest descent method.

  • PDF

Congestion Control Algorithm for TCP Performance Enhancement by Bandwidth Measurement in Vertical Handoffs between Heterogeneous Wireless Networks (이기종 무선 망간 vortical handoff시 대역폭 측정을 통한 TCP 성능향상 혼잡제어 알고리즘)

  • Hwang An-Kyu;Lee Jae-Yong;Jung Whoi-Jin;Kim Byung-Chul
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.8 s.350
    • /
    • pp.84-90
    • /
    • 2006
  • With the widespread of the wireless Internet and wireless LAN, different wireless technologies such as 3G cellular networks and WLAN will cooperate to support more users and applications with higher data rate over wider areas. When a mobile node moves around in the hybrid networks, it needs to perform seamless vertical handoffs between different wireless networks to provide high performance data transmission. When an application with TCP connection in a mobile node performs a vertical handoff, TCP performance is degraded due to packet losses even though it maintains the previous TCP state information during handoff, because 3G and WLAN have different available bandwidth. In this paper, we propose a new congestion control algorithm for vertical handoff to improve the TCP performance by measuring the rough end-to-end available bandwidth and calculating the slow-start threshold. By ns-2 simulation, we show that the proposed algorithm enhances the TCP performance during vertical handoffs compared to the previous algorithms.

Saptio-temporal Deinterlacing Based on Edge Direction and Spatio-temporal Brightness Variations (에지 방향성과 시공간 밝기 변화율을 고려한 시공간 De-Interlacing)

  • Jung, Jee-Hoon;Hong, Sung-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.16 no.5
    • /
    • pp.873-882
    • /
    • 2011
  • In this paper, we propose an efficient deinterlacing algorithm which interpolates the missing scan lines by weighted summing of the intra and the inter interpolation pixels according to the spatio-temporal variation. In the spatial interpolation, we adopt a new edge based spatial interpolation method which includes edge directional refinement. The conventional edge dependent interpolation algorithms are very sensitive to noise due to the failure of estimating edge direction. In order to exactly detect edge direction, our method first finds the edge directions around the pixel to be interpolated and then refines edge direction of the pixel using weighted maximun frequent filter. Futhermore, we improve the accuracy of motion detection by reducing the possibility of motion detection error using 3 tab median filter. In the final interpolation step, we adopt weighted sum of intra and inter interpolation pixels according to spatio-temporal variation ratio, thereby improving the quality in slow moving area. Simulation results show the efficacy of the proposed method with significant improvement over the previous methods in terms of the objective PSNR quality as well as the subjective image quality.

Implementation of LabVIEW®-based Joint-Linear Motion Blending on a Lab-manufactured 6-Axis Articulated Robot (RS2) (LabVIEW® 기반 6축 수직 다관절 로봇(RS2)의 이종 모션 블랜딩 연구)

  • Lee, D.S.;Chung, W.J.;Jang, J.H.;Kim, M.S.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.318-323
    • /
    • 2013
  • For fast and accurate motion of 6-axis articulated robot, more noble motion control strategy is needed. In general, the movement strategy of industrial robots can be divided into two kinds, PTP (Point to Point) and CP (Continuous Path). Recently, industrial robots which should be co-worked with machine tools are increasingly needed for performing various jobs, as well as simple handling or welding. Therefore, in order to cope with high-speed handling of the cooperation of industrial robots with machine tools or other devices, CP should be implemented so as to reduce vibration and noise, as well as decreasing operation time. This paper will realize CP motion (especially joint-linear) blending in 3-dimensional space for a 6-axis articulated (lab-manufactured) robot (called as "RS2") by using LabVIEW$^{(R)}$ (6) programming, based on a parametric interpolation. Another small contribution of this paper is the proposal of motion blending simulation technique based on Recurdyn$^{(R)}$ V7 and Solidworks$^{(R)}$, in order to figure out whether the joint-linear blending motion can generate the stable motion of robot in the sense of velocity magnitude at the end-effector of robot or not. In order to evaluate the performance of joint-linear motion blending, simple PTP (i.e., linear-linear) is also physically implemented on RS2. The implementation results of joint-linear motion blending and PTP are compared in terms of vibration magnitude and travel time by using the vibration testing equipment of Medallion of Zonic$^{(R)}$. It can be confirmed verified that the vibration peak of joint-linear motion blending has been reduced to 1/10, compared to that of PTP.

Numerical Thermal Analysis of IGBT Module Package for Electronic Locomotive Power-Control Unit (전동차 추진제어용 IGBT 모듈 패키지의 방열 수치해석)

  • Suh, Il Woong;Lee, Young-ho;Kim, Young-hoon;Choa, Sung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.10
    • /
    • pp.1011-1019
    • /
    • 2015
  • Insulated-gate bipolar transistors (IGBTs) are the predominantly used power semiconductors for high-current applications, and are used in trains, airplanes, electrical, and hybrid vehicles. IGBT power modules generate a considerable amount of heat from the dissipation of electric power. This heat generation causes several reliability problems and deteriorates the performances of the IGBT devices. Therefore, thermal management is critical for IGBT modules. In particular, realizing a proper thermal design for which the device temperature does not exceed a specified limit has been a key factor in developing IGBT modules. In this study, we investigate the thermal behavior of the 1200 A, 3.3 kV IGBT module package using finite-element numerical simulation. In order to minimize the temperature of IGBT devices, we analyze the effects of various packaging materials and different thickness values on the thermal characteristics of IGBT modules, and we also perform a design-of-experiment (DOE) optimization