• Title/Summary/Keyword: Hybrid rod

Search Result 49, Processing Time 0.024 seconds

The Development on Hybrid FRP Rod and Its Tensile Properties (Hybrid FRP Rod의 개발과 인장특성)

  • 곽계환;심종성;문도영;장화섭
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.527-533
    • /
    • 2004
  • Utilization of new lighter materials, more tough and durable than existing materials, is getting larger in recent constructions. FRP, stronger and lighter than present materials, can be formed in various shapes and has high durability, which makes it more profitable as a new material in construction fields. However, effort to use FRP in real construction is toddling and FRP is used primarily as reinforcing material in connote structure. We are about to develop Hybrid FRP Rod for the development of advanced construction material which is based on IT, by Hybridization of HIP, spotlighted as new construction material, and optical sensor in smart measurement. Beforehand, it is required to fully understand the properties of tension test operated in Hybrid FRP Rod. For this, a specimen was made by hybridization of FRP Rod and FBG sensor. Strain of Hybrid FRP Rod was measured comparing electric sensor and FBG sensor.

  • PDF

Flexural Behavior of Reinforced Concrete Beam with Hybrid FRP Rods (Hybrid FRP Rod로 보강된 철근콘크리트 보의 휨 거동)

  • Kwak, Kae-Hwan;Jang, Hwa-Sup;Yang, Dong-Oun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.327-330
    • /
    • 2005
  • In this study, the nature of brittleness, one of the main problems of GFRP(Glass Fiber Reinforced Plastic) Re-bar, is improved. Therefore, Hybrid GFRP Rod is developed by attaching FBG sensor to the new GFRP Rod with toughness, essential for flexural reinforcement of the concrete. The test was performed with specimens of Hybrid GFRP Rod. According to the test, data measured by electric gauge sensor are compared with data measured by FBG sensor.

  • PDF

An Experimental Study on the Heat Transfer Enhancement by Hybrid Rod (하이브리드 로드에 의한 열전달증진에 관한 연구)

  • Kum, S.M.;Kim, D.C.;Yim, J.S.
    • Solar Energy
    • /
    • v.19 no.3
    • /
    • pp.93-100
    • /
    • 1999
  • The objective of this experimental study was to investigate the characteristics of heat transfer and air flow in two-dimensional impinging jet system, in which hybrid rods have been set up in front of heating surface in order to increase heat transfer. The shape of hybrid rods had a cross section made with a half of circular cross section and that of rectangular. This time, the clearance from hybrid rod to heating surface(C=1, 2, 4mm) and the pitch between each hybrid rods(P=30, 40, 50mm) changed for the transition region(H/B=10). And this result compared with the experimentation without hybrid rod. As a result, heat transfer performance was best under the condition of C=1mm, in case clearance changed, and as the pitch is 30mm, it is largely influenced by eddies and acceleration in case pitch of hybrid rod changed.

  • PDF

Heat Transfer Characteristics in Impinging Air Jet with Hybrid Rod (하이브리드 로드를 갖는 충돌공기제트의 열전달특성에 관한 연구)

  • 표창기;박상록;김동춘;금성민;임장순
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.3
    • /
    • pp.277-283
    • /
    • 2000
  • The heat transfer characteristics for air jet vertically impinging on a flat plate which had a set of hybrid rod were investigated experimentally. The rod had a cross section made with a half of circular cross section and that of rectangular and was installed in front of the plate. The heating surface was given constant heat flux value of 1020 W/$m^2^{\circ]C$ and the problem parameters investigated were jet Reynolds number, nozzle-to-plate spacing and the rod size. The local and local average Nusselt number characteristics were found to be dependent on the rod size because the flow was disturbed by installing the rod. Higher convective heat transfer rate occurred in the whole plate as well as in the stagnation region.

  • PDF

CFD Analysis of a Concept of Nuclear Hybrid Heat Pipe with Control Rod (원자로 제어봉과 결합된 하이브리드 히트파이프의 CFD 해석)

  • Jeong, Yeong Shin;Kim, Kyung Mo;Kim, In Guk;Bang, In Cheol
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.6
    • /
    • pp.109-114
    • /
    • 2014
  • After the Fukushima accident in 2011, it was revealed that nuclear power plant has the vulnerability to SBO accident and its extension situation without sufficient cooling of reactor core resulting core meltdown and radioactive material release even after reactor shutdown. Many safety systems had been developed like PAFS, hybrid SIT, and relocation of RPV and IRWST as a part of steps for the Fukushima accident, however, their applications have limitation in the situation that supply of feedwater into reactor is impossible due to high pressure inside reactor pressure vessel. The concept of hybrid heat pipe with control rod is introduced for breaking through the limitation. Hybrid heat pipe with control rod is the passive decay heat removal system in core, which has the abilities of reactor shutdown as control rod as well as decay heat removal as heat pipe. For evaluating the cooling performance hybrid heat pipe, a commercial CFD code, ANSYS-CFX was used. First, for validating CFD results, numerical results and experimental results with same geometry and fluid conditions were compared to a tube type heat pipe resulting in a resonable agreement between them. After that, wall temperature and thermal resistances of 2 design concepts of hybrid heat pipe were analyzed about various heat inputs. For unit length, hybrid heat pipe with a tube type of $B_4C$ pellet has a decreasing tendency of thermal resistance, on the other hand, hybrid heat pipe with an annular type $B_4C$ pellet has an increasing tendency as heat input increases.

Hybrid Self-Tuning Control of a Single rod Hydraulic Cylinder with Varying Payload (가변 하중을 갖는 편로드 유압 실린더의 합성 자기동조 제어)

  • Kim, M.S.;Kim, J.T.;Han, K.B.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.12
    • /
    • pp.174-181
    • /
    • 1997
  • A proposed hybrid self-tuning control scheme for single rod hydraulic cylinder which has varying loads is presented here. An adaptive controller is developed for the system that use feedforward and P feedback control for simultaneous parameter identification and tracking control. Through experimental results, the performance comparison of the hybrid self-tuning controller with a constant gain P contro- ller clearly shows its superior ability in handling load changes in quiescent states.

  • PDF

Numerical Study on Heat Transfer Characteristics in Impinging Air Jet System (충돌분류시스템의 열전달 특성에 관한 수치적 연구)

  • Kum, Sung-Min;Kim, Dong-Choon
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.4
    • /
    • pp.55-61
    • /
    • 2003
  • Heat transfer characteristics for an air jet vertically impinging on a flat plate with a set of hybrid rods was investigated numerically using the RNG k-$\varepsilon$turbulent model. A commercial finite-volume code FLUENT is used. The rods had cross sections of half circular and rectangular shapes. The heating surface was heated with a constant heat flux value of $1020W/m^2$. Parameters investigated were the jet Reynolds number, nozzle -to-plate spacing, the rod pitch and rod-to-plate clearance. The local and average Nusselt number were found to be dependent on the rod pitch and the clearance because installing rods disturbed the flow. Higher convective heat transfer rate occurred in the whole plate as well as in the wall jet region.

Characteristic confirm of Compensated Film Characteristics using Reactive Rod-like Mesogen in Twisted Nematic mode (TN mode에서의 Reactive Rod-like Mesogen을 이용한 보상필름의 특성 확인)

  • Jeon, Eun-Jeong;Kwon, Dong-Won;Kang, Byeong-Gyun;Lim, Young-Jin;Kim, Jong-Hoon;Seong, Hyeon-Jun;Lee, Myong-Hoon;Lee, Seung-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.271-272
    • /
    • 2009
  • We fabricated a hybrid aligned film using reactive rod-like mesogen to reduce light leakage of twisted nematic(TN) cell in off-axis of the dark state. We proved that the fabricated compensation film has hybrid alignment by changing phase retardation according to polar angle. In this paper, we confirmed characteristics of compensation film through simulation results and found the matching factor of simulation results and experimental result. In result, the maximum pretilt angle of hybrid compensated film is $19^{\circ}$ which has phase retardation 0.1445.

  • PDF

Development of Estimated Model for Axial Displacement of Hybrid FRP Rod using Strain (Hybrid FRP Rod의 변형률을 이용한 축방향 변위추정 모형 개발)

  • Kwak, Kae-Hwan;Sung, Bai-Kyung;Jang, Hwa-Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.639-645
    • /
    • 2006
  • FRP (Fiber Reinforced Polymer) is an excellent new constructional material in resistibility to corrosion, high intensity, resistibility to fatigue, and plasticity. FBG (Fiber Bragg Grating) sensor is widely used at present as a smart sensor due to lots of advantages such as electric resistance, small-sized material, and high durability. However, with insufficiency of measuring displacement, FBG sensor is used only as a sensor measuring physical properties like strain or temperature. In this study, FRP and FBG sensors are to be hybridized, which could lead to the development of a smart FRP rod. Moreover, developing the estimated model for deflection with neural network method, with the data measured through FBG sensor, could make conquest of a disadvantage of FBG sensor - uniquely used for sensing strain. Artificial neural network is MLP (Multi-layer perceptron), trained within error rate of 0.001. Nonlinear object function and back-propagation algorithm is applied to training and this model is verified with the measured axial displacement through UTM and the estimated numerical values.

Experimental Study on Pressure Loss of Flow Parallel to Rod Bundle with Spacer Grid (지지격자가 있는 봉다발과 축방향으로 평행한 유동의 압력손실에 관한 실험적 연구)

  • Lee, Chi-Young;Shin, Chang-Hwan;Park, Ju-Yong;In, Wang-Kee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.7
    • /
    • pp.689-695
    • /
    • 2012
  • The friction factor in a rod bundle and the loss coefficient at a spacer grid were examined. As a test section, 25 smooth rods, 9.5 mm in diameter and 2000 mm in length, were prepared and installed in a $5{\times}5$ square array in a square channel. In this case, the P/D (Pitch-to-Diameter ratio) was 1.35. In this work, plain (i.e., no mixing vanes), split-vane, and hybrid-vane spacer grids were tested. In a bare rod bundle (i.e., no spacer grid), the measured friction factors were in good agreement with the previous correlations. Among the spacer grids tested, the hybrid-vane spacer grid presented the largest friction factor in the rod bundle and loss coefficient. This may be because of the flow pattern change induced by large relative plugging of the flow cross section and mixing vane geometry. At Re=$5{\times}10^5$, the predicted loss coefficients of plain, splitvane, and hybrid-vane spacer grids were approximately 0.79, 0.80, and 0.88, respectively.