• Title/Summary/Keyword: Hybrid renewable power systems

Search Result 66, Processing Time 0.021 seconds

Modeling of Solar/Hydrogen/DEGS Hybrid System for Stand Alone Applications of a Large Store

  • Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.11
    • /
    • pp.57-68
    • /
    • 2013
  • The market for distributed power generation based on renewable energy is increasing, particularly for standalone mini-grid applications in developing countries with limited energy resources. Stand-alone power systems (SAPS) are of special interest combined with renewable energy design in areas not connected to the electric grid. Traditionally, such systems have been powered by diesel engine generator sets (DEGS), but also hybrid systems with photovoltaic and/or wind energy conversion systems (WECS) are becoming quite common nowadays. Hybrid energy systems can now be used to generate energy consumed in remote areas and stand-alone microgrids. This paper describes the design, simulation and feasibility study of a hybrid energy system for a stand-alone power system. A simulated model is developed to investigate the design and performance of stand-alone hydrogen renewable energy systems. The analysis presented here is based on transient system simulation program (TRNSYS) with realistic ventilation load of a large store. Design of a hybrid energy system is site specific and depends on the resources available and the load demand.

Independent MPP Tracking Method of Hybrid Solar-Wind Power Conditioning Systems Using Integrated Dual-Input Single-PWM-Cell Converter Topology

  • Thenathayalan, Daniel;Ahmed, Ashraf;Choi, Byung-Min;Park, Jeong-Hyun;Park, Joung-Hu
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.790-802
    • /
    • 2017
  • This paper proposes the modeling and control strategy to track the MPPs of hybrid PV and Wind power systems, using a new dual input boost converter. The dual input power conditioning system with an independent MPPT control scheme is introduced with minimum number of circuit elements in order to reduce the switching loss, size and cost of the system. Since the operating conditions for the PV and Wind power systems are very distinct from each other, an efficient and superior control system is required to track the MPPs of both renewable sources with the use of a simply-structured single-ended single-inductor converter. The design of Power-Conditioning System (PCS) and detail control strategy are presented in this paper. To provide independent tracking of MPPs, a variable duty-cycle control strategy is employed for the wind system and a variable frequency strategy is employed for the PV system. Finally, the proposed dual-input converter for hybrid power conditioning system is implemented and the hardware test results are presented. From the hardware experiment, it is concluded that the proposed system successfully tracks the MPPs of both of the renewable power systems independently.

Preliminary Feasibility Study on Wind and Solar Hybrid Power Systems based on Venturi Effects for Buildings (벤투리 효과를 활용한 도심형 건물용 하이브리드 풍력 및 태양광 발전 시스템 기초타당성 예비연구)

  • Suhyun Kim;Yoonsoo Kim;Sumin Park;Jihyeon An;Sanghun Lee
    • New & Renewable Energy
    • /
    • v.19 no.1
    • /
    • pp.22-30
    • /
    • 2023
  • Recently, the use of renewable energy has been increasing to achieve carbon neutrality. The concept of a zero-energy building is also attracting attention. In this study, a preliminary study was conducted to analyze the feasibility of a hybrid wind and solar power generation system between buildings that utilize the building wind generated by the Venturi effect. For this purpose, the wind speed and sunshine hours were monitored in the area where the building wind blows by the Venturi effect, and the power generation depending on system types, areas, and season was estimated. Consequently, the wind power generation system showed a larger amount of power per area than solar power. The wind power systems can generate larger power if wind power blades are installed along the height of the building. As a preliminary study, this study verified the feasibility of the system utilizing building wind and suggested follow-up studies.

Analysis and Implementation of a DC-DC Converter for Hybrid Power Supplies Systems

  • Yang, Lung-Sheng;Lin, Chia-Ching
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1438-1445
    • /
    • 2015
  • A new DC-DC power converter is researched for renewable energy and battery hybrid power supplies systems in this paper. At the charging mode, a renewable energy source provides energy to charge a battery via the proposed converter. The operating principle of the proposed converter is the same as the conventional DC-DC buck converter. At the discharging mode, the battery releases its energy to the DC bus via the proposed converter. The proposed converter is a non-isolated high step-up DC-DC converter. The coupled-inductor technique is used to achieve a high step-up voltage gain by adjusting the turns ratio. Moreover, the leakage-inductor energies of the primary and secondary windings can be recycled. Thus, the conversion efficiency can be improved. Therefore, only one power converter is utilized at the charging or discharging modes. Finally, a prototype circuit is implemented to verify the performance of the proposed converter.

Power and Economic Simulation of Island for the Field Demonstration Test of Smart Microgrid System Based on Stand-alone Wind power (독립형 풍력기반 Smart Microgrid 시스템의 현장 실증 시험을 위한 도서지역 전력 및 경제성 시뮬레이션)

  • Kang, SangKyun;Lee, EunKyu;Lee, JangHo
    • New & Renewable Energy
    • /
    • v.10 no.3
    • /
    • pp.22-30
    • /
    • 2014
  • The isolated self-generating electricity with diesel engine generator has been used in islands far away from main land. It costs high because of increasing oil price, and unsafe to have supplying oil and its related components by ship due to unexpectable marine conditions. Therefore there is the need for the hybrid system of renewable energy like wind or solar energy systems with oil engine generator, which can reduce oil use and extend oil supplying period. In this study, the feasibility of such hybrid system with smart micro grid on the eight islands of Jeon-nam province is surveyed to find good place for the demonstration test of the hybrid system. In each island, 3 wind turbine systems of 10 kW and photovoltaic of 20 kW are tested with already installed diesel engine. The performance and costs of the hybrid system in each island are compared in the given conditions of solar and wind energy potential. As a result of the study, Jung-ma island is recommended for the optimum place to make real field demonstration test of isolated hybrid generating and smart grid systems.

Load Control between PV Power Plants and Diesel Generators

  • Mohamed Khalil Abdalla MohamedAli;AISHA HASSAN ABDALLA HASHIM;OTHMAN KHALIFA
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.6
    • /
    • pp.33-40
    • /
    • 2024
  • Introducing renewable energy sources, such as wind and photovoltaic arrays, in microgrids that supply remote regions with electricity represents a significant leap in electricity generation. Combining photovoltaic panels and diesel engines is one of the most common ways to supply electricity to rural communities. Such hybrid systems can reduce the cost of electricity generation in these remote power systems because they use free energy to balance the power generated by diesel engines. However, the combination of renewable energy sources and diesel engines tends to complicate the sizing and control of the entire system due to the intermittent nature of renewable energy sources. This study sought to investigate this issue in depth. It proposes a robust hybrid controller that can be used to facilitate optimum power sharing between a PV power source and diesel generators based on the dynamics of the available PV energy at any given time. The study also describes a hybrid PV-diesel power plant's essential functional parts that produce electricity for a microgrid using a renewable energy source. Power control needs to be adjusted to reduce the cost of power generation.

Hybrid wind-solar power deployment in India: Green Energy Open Access (GEOA) and Renewable Energy Certificates (REC)

  • Hardik K. Jani;Surendra Singh Kachhwaha;Garlapati Nagababu;Alok Das
    • Advances in Energy Research
    • /
    • v.8 no.4
    • /
    • pp.243-252
    • /
    • 2022
  • The hybrid wind-solar energy concept has a big influence on the spread of wind and solar power projects in India since it combines the benefits of both industries while also providing extra benefits such as resource sharing such as land, infrastructure, and power evacuation systems. Furthermore, while the hybrid policy may reduce certain barriers to the installation of wind and solar energy in India, there are still some issues that must be resolved rapidly in order to ensure a sustainable installation. According to the study's findings, the installation of wind and solar power plants is significantly influenced by energy policy. The wind-solar hybrid energy strategy will also be crucial in the near future for growing the usage of renewable energy sources. Aside from that, the establishment of Green Energy Open Access (GEOA) and the restart of the trading of Renewable Energy Certificates (REC) would promote the quick deployment of standalone and hybrid renewable power projects throughout the nation, enabling it to reach 500 GW of installed non-fossil energy capacity by 2030.

A Pre-Feasibility Test of Introducing Renewable Energy Hybrid Systems -Case Studies for 3 Off-Grid Islands- (도서지역 신·재생복합 전력시스템 보급 타당성 분석 -3개 도서지역 분석결과-)

  • Jang, HaNa;Kim, Suduk
    • Environmental and Resource Economics Review
    • /
    • v.15 no.4
    • /
    • pp.693-712
    • /
    • 2006
  • A pre-feasibility test is done for renewable energy hybrid power systems at off~grid islands in which the current power supply is provided only by diesel generation. We apply Homer (Hybrid Optimization Model for Electric Renewables) which was developed by the National Renewable Energy Laboratory (NREL) for the analysis to identify the cost-minimizing combination of power generating facilities for the given load profiles. Chuja-Do, Geomun-Do and Youngsan-Do have been selected for our analysis considering the wind resources data of the Korea Institute of Energy Research (KIER). Information on wind speed, solar radiation and temperature is also used for the analysis. System component cost information from overseas market has been used due to the lack of domestic information. Site specific Load profile for electricity demand for those islands are reconstructed based on the partial survey results obtained form other sources. The LCOE of the least cost hybrid power systems for Chuja-Do, Geomun-Do and Youngsan-Do are $0.278/kWh, $0.234/kWh and $0.353/kWh, respectively Considering the fact that diesel generation is being subsidized at the price of $0.300/kWh by the government, first 2 cases are economically feasible for the introduction of renewable energy hybrid systems to those islands. But the third case of Youngsan-Do does not meet the criteria. The basic differences of these pre-feasibility test results are from the differences of the site specific renewable energy conditions, especially wind resources. In summary, promoting hybrid systems in the off-grid remote island should be based on the economic feasibility test results. Not all the off-grid islands are feasible for introducing this renewable energy hybrid system.

  • PDF

Optimization of Stand-Alone Hybrid Power Systems Using HOMER Program (HOMER 프로그램을 이용한 독립형 하이브리드 발전시스템 최적화)

  • Yang, Su-Hyung;Boo, Chang-Jin;Kim, Ho-Chan
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.2
    • /
    • pp.11-18
    • /
    • 2012
  • Diesel fuel is expensive because transportation to remote areas adds extra cost, and it causes air pollution by engine exhaust. Providing a feasible economical and environmental solution to diesel generators is important. A hybrid system of renewable plants and diesel generators can benefit islands or other isolated communities and increase fuel savings. Renewable energy is, however, a natural source that produces a fluctuating power output. In this paper, hybrid power system of the marado lighthouse is proposed to supply stable power in the stand-alone hybrid power system. The proposed hybrid power system consists of the diesel generator, wind turbine, photovoltaic, fuel cell, and battery bank. To decrease the carbon emissions and find the optimization, the cost analysis of hybrid system is simulated using HOMER program and the optimized hybrid power system is designed.

Optimal unidirectional grid tied hybrid power system for peak demand management

  • Vineetha, C.P.;Babu, C.A.
    • Advances in Energy Research
    • /
    • v.4 no.1
    • /
    • pp.47-68
    • /
    • 2016
  • A well designed hybrid power system (HPS) can deliver electrical energy in a cost effective way. In this paper, model for HPS consisting of photo voltaic (PV) module and wind mill as renewable energy sources (RES) and solar lead acid battery as storage device connected to unidirectional grid is developed for peak demand reduction. Life time energy cost of the system is evaluated. One year hourly site condition and load pattern are taken into account for analysing the HPS. The optimal HPS is determined for least life time energy cost subject to the constraints like state of charge of the battery bank, dump load, renewable energy (RE) generation etc. Optimal solutions are also found out individually for PV module and wind mill. These three systems are compared to find out the most feasible combination. The results show that the HPS can deliver energy in an acceptable cost with reduced peak consumption from the grid. The proposed optimization algorithm is suitable for determining optimal HPS for desired location and load with least energy cost.