• Title/Summary/Keyword: Hybrid precast concrete panel

Search Result 4, Processing Time 0.019 seconds

Structural Behavior on Horizontal Connection for Hybrid Precast Concrete Panel (복합 프리캐스트 콘크리트 패널 수평접합부의 구조적 거동)

  • Lee, Sang-Sup;Park, Keum-Sung
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.10
    • /
    • pp.155-162
    • /
    • 2019
  • Hybrid precast concrete panel is a wall element that is able to quickly construct the core wall structure for moderate-rise modular buildings. Hybrid precast concrete panel has unique characteristics which is a pair of C-shaped steel beams combined at the top and bottom of a concrete wall, In this study, an improved anchorage detail for vertical rebar is proposed to ensure the lateral force resistance performance of hybrid precast concrete panel emulating monolithic concrete wall. Also, the structural performance of horizontal connection is investigated experimentally with the bolt spacing parameter. And the behavior of hybrid precast concrete panel with the improved detail is compared with the monolithic concrete wall tested in a previous study. Finally, the required thickness of C-shaped steel beam to eliminate or minimize the deformation in horizontal connection is calculated by prying action equation.

A Experimental Study on Structural Behavior of Hybrid Precast Concrete Panel (복합 프리캐스트 콘크리트 패널의 구조 거동에 대한 실험적 연구)

  • Lee, Sang-Sup;Park, Keum-Sung
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.9
    • /
    • pp.11-18
    • /
    • 2018
  • As the height of the modular buildings increases, their stability becomes more and more dependent on the core. All traditional construction methods in structural concrete and steel can be utilized for cores in modular buildings but a core system with dry connection is more desirable to complete a greater degree of factory finish and faster erection of modular buildings. In order to do that, the hybrid PC(precast concrete) panel, which has a pair of C-shaped steel beams combined at the top and bottom of a concrete wall, was developed, In this study the cyclic lateral loading test on the hybrid PC panel is carried out and the panel configurations are examined to enhance the structural performance in comparison with the RC wall. Experimental results show that the strength of hybrid PC panel is about 70% of thar ot RC wall and the anchorage of vertical reinforcing bar welded to C-shaped steel beam needs to be improved.

Development of Hybrid Panel with C-shaped Steel Beam at Top and Bottom of Precast Concrete Wall (프리캐스트 콘크리트 벽체의 상하부에 C형강 보가 결합된 복합 패널의 개발)

  • Lee, Sang Sup;Park, Keum Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.6
    • /
    • pp.435-442
    • /
    • 2017
  • A lateral load resisting system is a necessary structural element for the mid- to high-rise modular buildings and concrete cores are known as the most typical lateral load resisting systems in 10- to 20-story modular buildings. It is difficult to construct a concrete core simultaneously with the installation and finishing work of modular units because concrete placed using wet methods might contaminate or destroy the modular unit. Therefore, we have developed a hybrid PC (precast concrete) panel construction method that can construct a concrete core together with the installation of modular units. The hybrid PC panel is a load-bearing element in which a pair of C-shaped beams are combined at the top and bottom of a concrete wall. Concrete cores can be constructed by dry method to connect the hybrid PC panels with bolts. In this study, the details and connection of hybrid PC panels are improved to have the lateral performance comparable to reinforced concrete structural walls and are verified through FE analysis.

Analysis for Nonlinear Behavior of Concrete Panel Considering Steel Bar Buckling (철근 좌굴을 고려한 콘크리트 패널의 비선형 거동에 대한 해석)

  • Lee, Sang-Sup;Park, Keum-Sung;Bae, Kyu-Woong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.130-137
    • /
    • 2018
  • Many constitutive models for concrete have been developed to predict the nonlinear behavior of concrete members considerably. The constitutive model for reinforcing bar that include the tension stiffening effect due to the bond characteristics between steel bars and concrete is being studied but the bilinear model is generally used. It was found that the buckling of the longitudinal reinforcing bars is controlled the nonlinear behavior of hybrid precast concrete panel, which is being developed for core wall. In this study, the constitutive models that can consider the embedding and buckling effects of reinforcing bar are investigated and a new model combing these constitutive models is proposed. In order to verify the proposed model, the analysis results are compared with experimental results of the concrete wall and hybrid precast concrete panel. The analysis of embedding-effect-only modeling predicted that the deformation increases continually without the decrease in the load carrying capacity. However, the analysis results of proposed model showed good agreement with some experimental results, thus verifying the proposed computational model.