• 제목/요약/키워드: Hybrid optical amplifier

검색결과 20건 처리시간 0.023초

Design of Hybrid Optical Amplifiers for High Capacity Optical Transmission

  • Kim, Seung-Kwan;Chang, Sun-Hyok;Han, Jin-Soo;Chu, Moo-Jung
    • ETRI Journal
    • /
    • 제24권2호
    • /
    • pp.81-96
    • /
    • 2002
  • This paper describes our design of a hybrid amplifier composed of a distributed Raman amplifier and erbium-doped fiber amplifiers for C- and L-bands. We characterize the distributed Raman amplifier by numerical simulation based on the experimentally measured Raman gain coefficient of an ordinary single mode fiber transmission line. In single channel amplification, the crosstalk caused by double Rayleigh scattering was independent of signal input power and simply given as a function of the Raman gain. The double Rayleigh scattering induced power penalty was less than 0.1 dB after 1000 km if the on-off Raman gain was below 21 dB. For multiple channel amplification, using commercially available pump laser diodes and fiber components, we determined and optimized the conditions of three-wavelength Raman pumping for an amplification bandwidth of 32 nm for C-band and 34 nm for L-band. After analyzing the conventional erbium-doped fiber amplifier analysis in C-band, we estimated the performance of the hybrid amplifier for long haul optical transmission. Compared with erbium-doped fiber amplifiers, the optical signal-to-noise ratio was calculated to be higher by more than 3 dB in the optical link using the designed hybrid amplifier.

  • PDF

Wideband Gain Flattened Hybrid Erbium-doped Fiber Amplifier/Fiber Raman Amplifier

  • Afkhami, Hossein;Mowla, Alireza;Granpayeh, Nosrat;Hormozi, Azadeh Rastegari
    • Journal of the Optical Society of Korea
    • /
    • 제14권4호
    • /
    • pp.342-350
    • /
    • 2010
  • An optimal wideband gain flattened hybrid erbium-doped fiber amplifier/fiber Raman amplifier (EDFA/FRA) has been introduced. A new and effective optimization method called particle swarm optimization (PSO) is employed to find the optimized parameters of the EDFA/FRA. Numerous parameters which are the parameters of the erbium-doped fiber amplifier (EDFA) and the fiber Raman amplifier (FRA) define the gain spectrum of a hybrid EDFA/FRA. Here, we optimize the length, $Er^{3+}$ concentration, and pump power and wavelength of the EDFA and also pump powers and wavelengths of the FRA to obtain the flattest operating gain spectrum. Hybrid EDFA/FRA with 6-pumped- and 10-pumped-FRAs have been studied. Gain spectrum variations are 1.392 and 1.043 dB for the 6-pumped- and 10-pumped-FRAs, respectively, in the 108.5 km hybrid EDFA/FRAs, with 1 mW of input signal powers. Dense wavelength division multiplexing (DWDM) system with 60 signal channels in the wavelength range of 1529.2-1627.1 nm, i.e. the wide bandwidth of 98 nm, is studied. In this work, we have added FRA's pump wavelengths to the optimization parameters to obtain better results in comparison with the results presented in our previous works.

Wideband Hybrid Fiber Amplifier Using Er-Doped Fiber and Raman Medium

  • Seo, Hong-Seok;Ahn, Joon-Tae;Park, Bong-Je;Chung, Woon-Jin
    • ETRI Journal
    • /
    • 제29권6호
    • /
    • pp.779-784
    • /
    • 2007
  • In this paper, we report the experimental results of a hybrid wideband fiber amplifier. The amplifying medium is a concatenated hybrid fiber consisting of Er-doped fiber (EDF) and dispersion compensating fiber (DCF). The gain mechanisms are based on stimulated emission in the EDF and stimulated Raman scattering (SRS) in the DCF. Since we simultaneously use optical amplification by the two processes, the gain bandwidth is easily expanded over 105 nm by a two-tone pumping scheme. Using an experimental setup constructed with a hybrid structure of EDF-DCF-EDF, we analyzed the spectral behavior of amplified spontaneous emission for pumping powers. We achieved an optical gain of over 20 dB in the wavelength range from 1,500 to 1,600 nm under optimized pumping conditions to make the spectral gain shape flat.

  • PDF

Optimizing the Net Gain of a Raman-EDFA Hybrid Optical Amplifier using a Genetic Algorithm

  • Singh, Simranjit;Kaler, Rajinder Singh
    • Journal of the Optical Society of Korea
    • /
    • 제18권5호
    • /
    • pp.442-448
    • /
    • 2014
  • For the first time, a novel analytical model of the net gain for a Raman-EDFA hybrid optical amplifier (HOA) is proposed and its various parameters optimized using a genetic algorithm. Our method has been shown to be robust in the simultaneous analysis of multiple parameters (Raman length, EDFA length, and pump powers) to obtain large gain. The optimized HOA is further investigated at the system level for the scenario of a 50-channel DWDM system with 0.2-nm channel spacing. With an optimized HOA, a flat gain of >17 dB is obtained over the effective ITU-T wavelength grid with a variation of less than 1.5 dB, without using any gain-flattening technique. The obtained noise figure is also the lowest value ever reported for a Raman-EDFA HOA at reduced channel spacing.

Simulation and Experimental Validation of Gain-Control Parallel Hybrid Fiber Amplifier

  • Ali, Mudhafar Hussein;Abdullah, Fairuz;Jamaludin, Md. Zaini;Al-Mansoori, Mohammed Hayder;Al-Mashhadani, Thamer Fahad;Abass, Abdulla Khudiar
    • Journal of the Optical Society of Korea
    • /
    • 제18권6호
    • /
    • pp.657-662
    • /
    • 2014
  • We demonstrate a simulation of a parallel hybrid fiber amplifier in the C+L-band with a gain controlling technique. A variable optical coupler is used to control the input signal power for both EDFA and RFA branches. The gain spectra of the C+L-band are flattened by optimizing the coupling ratio of the input signal power. In order to enhance the pump conversion efficiency, the EDFA branch was pumped by the residual Raman pump power. A gain bandwidth of 60 nm from 1530 nm to 1590 nm is obtained with large input signal power less than -5 dBm. The gain variation is about 1.06 dB at a small input signal power of -30 dBm, and it is reduced to 0.77 dB at the large input signal power of -5 dBm. The experimental results show close agreement with the simulation results.

폴리머 링 공진기 기반의 가감필터 반사기와 반사형 반도체 광 증폭기가 하이브리드 집적된 파장 가변 레이저 (Hybrid-integrated Tunable Laser Using Polymer-ring Resonator-based Add/Drop Filter Reflector and Reflective Semiconductor Optical Amplifier)

  • 이호;김건우;정영철;김수현
    • 한국광학회지
    • /
    • 제20권4호
    • /
    • pp.217-222
    • /
    • 2009
  • 본 논문에서는 고굴절률차 폴리머 도파로를 이용하여 이중 링 공진기 가감필터(Add/Drop Filter) 반사기를 설계하고 제작하였다. 이 가감필터 반사기를 반사형 반도체 광 증폭기와 하이브리드 집적함으로써 저가형 파장가변 레이저를 제작하고 그 측정결과를 분석하였다. 이중 링 공진기 반사기는 서로 다른 반경을 가진 두 개의 링 공진기로 인하여 선택적인 반사 특성을 가지게 되며, 버니어 효과로 인하여 넓은 파장가변 특성을 가질 수 있다. 반사형 반도체 광 증폭기와 능동 정렬을 통하여 제작된 하이브리드 집적 파장가변 레이저는 26 dB의 부 모드 억제율과 0.03 nm의 선폭을 가지며 단일 모드로 발진하였다. 또한 25 mA의 전류를 이중 링 공진기 가감필터 반사기 상부에 형성된 전극에 인가하여 총 17 nm의 파장가변을 측정하였으며, 파장가변 과정에서 부 모드 억제율은 일정하게 유지됨을 확인하였다.

졸-겔법을 이용한 광증폭기의 Er 이온 캡슐화 및 광학적 특성 (Encapsulation and optical properties of Er3+ ions for planar optical amplifiers via sol-gel process)

  • Kim, Joo-Hyeun;Seok, Sang-Il;Ahn, Bok-Yeop
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 추계학술발표강연 및 논문개요집
    • /
    • pp.135-135
    • /
    • 2003
  • The fast evolution in the fold of optical communication systems demands powerful optical information treatment. These functions can be performed by integrated optical systems. A key component of such systems is erbium doped waveguide amplifier(EDWA). The intra 4f radiative transition of Er at 1.5 $\mu\textrm{m}$ is particularly interesting because this wavelength is standard in optical telecommunications. The fabrication of waveguide amplifier for integrated optics using sol-gel process has received an increasing attention. Potential advantage of lower cost by less capital equipment and easy processing makes this process an attractive alternatives to conventional technologies like flame hydrolysis deposition, ion exchange and chemical vapor deposition, etc. In addition, sol-gel process has been found to be extremely suitable for the control of composition and refractive index related directly with optical properties. The main drawback of such an amplifier with respect to the EDWA is the need for a much higher Er3+ concentration to compensate for the smaller interaction length. However, the high doping of Er might be resulted in the non-radiative relaxation by clustering of Er ions End co-operative upconversion. In order to solve this problem, we investigate the possibility of avoiding short Er-Er distances by encapsulation of Er3+ ions in hosts such as organic-inorganic hybrid materials. For inorganic-organic hybrid sols, methacryloxypropyltrimethoxysilane (MPTS), zirconyl chloride octahydrate and erbium(III) chloride hexahydrate were used as starting materials, followed by conventional sol-gel process. It was observed by TEM that nano sols having core/shell toplology were formed, depending on the mole ratio of Zr/Er. The surface roughness for the coatings on Si substrate was investigated by AFM as a function of Zr/Er ratio. The local environment and vibrational Properties of Er3+ ions were studied using Near-IR, FT-IR, and UV/Vis spectroscopy. Nano hybrid coatings derived from polymer and Er doped encapsulation Eave the good luminescence at 1.55$\mu\textrm{m}$.

  • PDF

Design Optimization of Hybrid-Integrated 20-Gb/s Optical Receivers

  • Jung, Hyun-Yong;Youn, Jin-Sung;Choi, Woo-Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권4호
    • /
    • pp.443-450
    • /
    • 2014
  • This paper presents a 20-Gb/s optical receiver circuit fabricated with standard 65-nm CMOS technology. Our receiver circuits are designed with consideration for parasitic inductance and capacitance due to bonding wires connecting the photodetector and the circuit realized separately. Such parasitic inductance and capacitance usually disturb the high-speed performance but, with careful circuit design, we achieve optimized wide and flat response. The receiver circuit is composed of a transimpedance amplifier (TIA) with a DC-balancing buffer, a post amplifier (PA), and an output buffer. The TIA is designed in the shunt-feedback configuration with inductive peaking. The PA is composed of a 6-stage differential amplifier having interleaved active feedback. The receiver circuit is mounted on a FR4 PCB and wire-bonded to an equivalent circuit that emulates a photodetector. The measured transimpedance gain and 3-dB bandwidth of our optical receiver circuit is 84 $dB{\Omega}$ and 12 GHz, respectively. 20-Gb/s $2^{31}-1$ electrical pseudo-random bit sequence data are successfully received with the bit-error rate less than $10^{-12}$. The receiver circuit has chip area of $0.5mm{\times}0.44mm$ and it consumes excluding the output buffer 84 mW with 1.2-V supply voltage.

Fuzzy Adaptive Modified PSO-Algorithm Assisted to Design of Photonic Crystal Fiber Raman Amplifier

  • Akhlaghi, Majid;Emami, Farzin
    • Journal of the Optical Society of Korea
    • /
    • 제17권3호
    • /
    • pp.237-241
    • /
    • 2013
  • This paper presents an efficient evolutionary method to optimize the gain ripple of multi-pumps photonic crystal fiber Raman amplifier using the Fuzzy Adaptive Modified PSO (FAMPSO) algorithm. The original PSO has difficulties in premature convergence, performance and the diversity loss in optimization as well as appropriate tuning of its parameters. The feasibility and effectiveness of the proposed hybrid algorithm is demonstrated and results are compared with the PSO algorithm. It is shown that FAMPSO has a high quality solution, superior convergence characteristics and shorter computation time.

5MHz-2GHz에서 동작하는 광대역 증폭기의 설계 및 제작

  • 박천석
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 1990년도 제5회 파동 및 레이저 학술발표회 5th Conference on Waves and lasers 논문집 - 한국광학회
    • /
    • pp.136-140
    • /
    • 1990
  • A hybrid wideband amplifier having bandwidth from 5MHz to 2000MHz with a gain of 10db$\pm$3dB is designed and implemented by using a lossy matched network and GaAs FET. The implemented amplifier circuit operates as a capacitor-resistor(C-R) coupled amplifier circuit in the low frequency range (below 800 MHz) in which {{{{ LEFT $\mid$ S_{21 } RIGHT $\mid$ }} for the GaAs FET is constant. It also operates as a lossless impedance matching circuit in the microwave frequency range in which S21 for the GaAs FET has a slope of approximately -6dB/octave. Using this configuration technique, Two stage GaAs FET amplifier implemented is measured to 10dB gain within a 3dB fluctuation over the frequency band from 5 to 2000MHz.

  • PDF