• Title/Summary/Keyword: Hybrid nanocomposite

Search Result 92, Processing Time 0.023 seconds

Flexible Energy Harvester Made of Organic-Inorganic Hybrid Piezoelectric Nanocomposite (유기-무기 하이브리드 압전 나노복합체 기반의 플렉서블 에너지 하베스터 제작 및 발전성능 평가)

  • Kwon, Yu Jeong;Hyeon, Dong Yeol;Park, Kwi-Il
    • Korean Journal of Materials Research
    • /
    • v.29 no.6
    • /
    • pp.371-377
    • /
    • 2019
  • A flexible piezoelectric energy harvester(f-PEH) that converts tiny mechanical and vibrational energy resources into electric signals without any restraints is drawing attention as a self-powered source to operate flexible electronic systems. In particular, the nanocomposites-based f-PEHs fabricated by a simple and low-cost spin-coating method show a mechanically stable and high output performance compared to only piezoelectric polymers or perovskite thin films. Here, the non-piezoelectric polymer matrix of the nanocomposite-based f-PEH is replaced by a P(VDF-TrFE) piezoelectric polymer to improve the output performance generated from the f-PEH. The piezoelectric hybrid nanocomposite is produced by distributing the perovskite PZT nanoparticles inside the piezoelectric elastomer; subsequently, the piezoelectric hybrid material is spin-coated onto a thin metal substrate to achieve a nanocomposite-based f-PEH. A fabricated energy device after a two-step poling process shows a maximum output voltage of 9.4 V and a current of 160 nA under repeated mechanical bending. Finite element analysis(FEA) simulation results support the experimental results.

Microstructural and Mechanical Characterization of Nanocomposite Ti-Al-Si-N Films Prepared by a Hybrid Deposition System (하이브리드 증착 시스템에 의해 합성된 나노복합체 Ti-Al-Si-N 박막의 미세구조와 기계적 특성)

  • 박인욱;최성룡;김광호
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.2
    • /
    • pp.109-115
    • /
    • 2003
  • Quaternary Ti-Al-Si-N films were deposited on WC-Co substrates by a hybrid deposition system of arc ion plating (AIP) method for Ti-Al source and DC magnetron sputtering technique for Si incorporation. The synthesized Ti-Al-Si-N films were revealed to be composites of solid-solution (Ti, Al, Si)N crystallites and amorphous Si3N4 by instrumental analyses. The Si addition in Ti-Al-N films affected the refinement and uniform distribution of crystallites by percolation phenomenon of amorphous silicon nitride, similarly to Si effect in TiN film. As the Si content increased up to about 9 at.%, the hardness of Ti-Al-N film steeply increased from 30 GPa to about 50 GPa. The highest microhardness value (~50 GPa) was obtained from the Ti-Al-Si-N film haying the Si content of 9 at.%, the microstructure of which was characterized by a nanocomposite of nc-(Ti,Al,Si) N/a$-Si_3$$N_4$.

Novel Processing Technology of Nanocomposites Using supercritical fluid

  • Hong, Young-Ki;Lee, Hyun-Jung;Lee, Sang-Soo;Park, Min;Kim, Jun-Kyung;Lim, Soon-Ho
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.215-215
    • /
    • 2006
  • The cyclic butylene terephthalte oligomer was synthesized and the composition of butylenes terephthalate cyclic oligomers was 51.2 % of dimer, 28.1 % of trimer, 7.9 % of tetramer, 8 % of pentamer and 4.8% of hexamer. Polybuthylene terephthalate was polymerized using this cyclic oligomer in the condition of melt process and supercritical process. And PBT/clay nanocomposite were manu- factured from melt process and supercritical process. Chlorodifluoro- methane(HCFC-22) was used as a solvent which has critical point ($Tc=96.2^{\circ}C$, Pc=49.7bar). Also polymer nanocomposite were manufactured using rapid expansion of supercritical solution process.

  • PDF

Effects of Intercalant on the Dispersibility of Silicate Layers in Clay- dispersed Nanocomposite of Poly(styrene-co-acrylonitrile) Copolymer

  • Ko, Moon-Bae;Park, Min;Kim, Junkyung;Choe, Chul-Rim
    • Macromolecular Research
    • /
    • v.8 no.2
    • /
    • pp.95-101
    • /
    • 2000
  • Clay/poly(styrene-co-acrylonitrile) copolymer (SAN) hybrids have been prepared by simple meltmixing of two components, SAN and organophilic clays with a twin screw extruder. Effects of intercalant on the dispersibility of silicate layers in clay-dispersed nanocomposite were studied by using five different organophilic clays modified with the intercalants of different chemical structures and different fractions of intercalant. The dispersibility of 10-$\AA$-thick silicate layers of clay in the hybrid was investigated by using an X-ray diffractometer and a transmission electron microscope. It was found that if the fraction of intercalant in the organophilic clay becomes too high, SAN is difficult to intercalate into the inter-gallery of silicate layers in the hybrid prepared at 180$\^{C}$, and thus the hybrid shows poor dispersibility of silicate layers. The flexural modulus of the hybrid increases as the dispersibility of silicate layers in the hybrid increases.

  • PDF

Comparison of the Properties of Poly(butylene terephthalate) Nanocomposite Fibers with Different Organoclays

  • Kim, Jeong-Cheol;Chang, Jin-Hae
    • Macromolecular Research
    • /
    • v.15 no.5
    • /
    • pp.449-458
    • /
    • 2007
  • The aims of this study were to investigate the intercalation of polymer chains with organoclays and improve the thermo-mechanical properties of poly(butylene terephthalate) (PBT) hybrids by comparing PBT hybrids synthesized using two different organoclays. The organoclays; dodecyltriphenylphosphonium-montmorillonite ($C_{12}PPh-MMT$) and dodecyltriphenylphosphonium-mica ($C_{12}PPh-Mica$), were used to fabricate the PBT hybrid fibers. Variations in the properties of the hybrid fibers with the organoclays within the polymer matrix, as well as the draw ratio (DR), are discussed. The thermo-mechanical properties and morphologies of the PBT hybrid fibers were characterized using differential scanning calorimetry, thermogravimetric analysis, wide-angle X-ray diffraction, electron microscopy and mechanical tensile properties analysis. The nanostructures of the hybrid fibers were determined using both scanning and transmission electron microscopies, which showed some of the clay layers to be well dispersed within the matrix polymer, although some clustered or agglomerated particles were also detected. The thermal properties of the hybrid fibers were found to be better than those of the pure PBT fibers at a DR = 1. The tensile mechanical properties of the $C_{12}PPh-MMT$ hybrid fibers were found to worsen with increasing DR. However, the initial moduli of the $C_{12}PPh-Mica$ hybrid fibers were found to slightly increase on increasing the DR from 1 to 18.

Dielectric Properties of Poly(vinyl phenol)/Titanium Oxide Nanocomposite Thin Films formed by Sol-gel Process

  • Myoung, Hey-J;Kim, Chul-A;You, In-Kyu;Kang, Seung-Y;Ahn, Seong-D;Kim, Gi-H;Oh, ji-young;Baek, Kyu-Ha;Suh, Kyung-S;Chin, In-Joo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1572-1575
    • /
    • 2005
  • Poly(vinyl phenol)(PVP)/$TiO_2$ nanocomposite the films have been prepared incorporating metal alkoxide with vinyl polymer to obtain high dielectric constant gate insulating material for a organic thin film transistor. The surface composition, the morphology, and the thermal and electrical properties of the hybrid nanocomposite films were observed by ESCA, scanning electron microscopy (SEM), atomic force microscopy(AFM), and thermogravimetric analysis (TGA). Thin hybrid films exhibit much higher dielectric constants (7.79 at 40wt% metal alkoxide).

  • PDF

Synthesis and Characterization of Colorless Polyimide Nanocomposite Films Containing Pendant Trifluoromethyl Groups

  • Jin, Hyo-Seong;Chang, Jin-Hae;Kim, Jeong-Cheol
    • Macromolecular Research
    • /
    • v.16 no.6
    • /
    • pp.503-509
    • /
    • 2008
  • A series of colorless polyimide (PI) nanocomposite films were synthesized from 2,2'-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA) and 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl (TFDB) with various organoclay contents by solution intercalation polymerization to poly(amic acid)s, followed by thermal imidization. The variation with the organoclay content of the thermomechanical properties, morphology, and optical transparency of the hybrids was examined at organoclay loadings ranging from 0 to 1.0 wt%. The hybrid films showed high optical transparency and almost no color, with cut-off wavelengths ranging from 352 and 356 nm and very low $b^*$ values of 1.19-1.77. The hybrid PI films showed good thermal properties with a glass transition temperature of $280-287^{\circ}C$. Most films did not show any significant thermal decomposition below $490^{\circ}C$. The addition of only a small amount of organoclay was sufficient to improve the tensile properties of the PI films with maximum enhancement being observed at 0.25 wt% organoclay. Moreover, these PI hybrids also had low coefficients of thermal expansion (CTE).

Nanostructured Bulk Ceramics (Part III. Carbon Nanotube Ceramics)

  • Han, Young-Hwan;Mukherjee, Amiya K.
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.541-544
    • /
    • 2009
  • In Part III, the paper will show that an alumina-carbon nanotube-niobium nanocomposite produced fracture toughness values that are several times higher than that of pure nanocrystalline alumina. It was possible to take advantage of both fiber-toughening and ductile-metal toughening in this investigation.

Tensile Properties and Thermal Stability of Cellulose Nanofibril/Clay Nanocomposites

  • Park, Byung-Dae;Singh, Adya P.;Um, In Chul
    • Current Research on Agriculture and Life Sciences
    • /
    • v.31 no.1
    • /
    • pp.18-24
    • /
    • 2013
  • This work attempted to fabricate organic/inorganic nanocomposite by combining organic cellulose nanofibrils (CNFs), isolated by 2,2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO)-mediated oxidation of native cellulose with inorganic nanoclay. The morphology and dimension of CNFs, and tensile properties and thermal stability of CNF/clay nanocomposites were characterized by transmission electron microscope (TEM), tensile test, and thermogravimetry (TG), respectively. TEM observation showed that CNFs were fibrillated structure with a diameter of about $4.86{\pm}1.341nm$. Tensile strength and modulus of the hybrid nanocomposite decreased as the clay content of the nanocomposite increased, indicating a poor dispersion of CNFs or inefficient stress transfer between the CNFs and clay. The elongation at break increased at 1% clay level and then continuously decreased as the clay content increased, suggesting increased brittleness. Analysis of TG and derivative thermogravimetry (DTG) curves of the nanocomposites identified two thermal degradation peak temperatures ($T_{p1}$ and $T_{p2}$), which suggested thermal decomposition of the nanocomposites to be a two steps-process. We think that $T_{p1}$ values from $219.6^{\circ}C$ to $235^{\circ}C$ resulted from the sodium carboxylate groups in the CNFs, and that $T_{p2}$ values from $267^{\circ}C$ to $273.5^{\circ}C$ were mainly responsible for the thermal decomposition of crystalline cellulose in the nanocomposite. An increase in the clay level of the CNF/clay nanocomposite predominately affected $T_{p2}$ values, which continuously increased as the clay content increased. These results indicate that the addition of clay improved thermal stability of the CNF/clay nanocomposite but at the expense of nanocomposite's tensile properties.

  • PDF