• 제목/요약/키워드: Hybrid manufacturing process

검색결과 217건 처리시간 0.025초

하이브리드시스템을 이용한 악취폐가스 처리 (Treatment of Malodorous Waste Air Using Hybrid System)

  • 이은주;임광희
    • Korean Chemical Engineering Research
    • /
    • 제48권3호
    • /
    • pp.382-390
    • /
    • 2010
  • 본 연구에서는 광촉매반응기/폐가스 가습조(유동상호기 및 무산소조)를 포함한 바이오필터공정으로 이루어진 하이브리드시스템을 구축하여 퇴비공장 또는 공공시설에서 발생되는 황화수소, 암모니아 및 휘발성 유기화합물을 포함한 악취폐가스에 대한 처리효율을 제고하고 종합적인 적정 작업조건을 구축하였다. 악취가스(2 L/min)에 포함된 암모니아(300 ppmv)의 경우 광촉매반응기에서 약 22%가 제거되고, 폐가스 가습조에서 약 55%가 제거되고, 후 공정인 바이오필터에서 나머지인 약 23%가 모두 제거되었다. 악취가스에 포함된 톨루엔(100 ppmv)의 경우 광촉매반응공정에서 약 20%가 제거되고, 폐가스 가습조(유동상 호기 및 무산소조)에서 약 10% 제거되며 마지막 공정인 바이오필터에서 나머지 70% 모두가 제거되었다. 따라서 물에 용해도가 높은 암모니아의 경우에는 폐가스가습조에서 주로 제거되었고, 용해도가 낮은 톨루엔의 경우는 바이오필터에서 주로 제거되었다. 한편 황화수소(10 ppmv)는 광촉매반응공정에서 거의 처리되고 잔류 trace는 폐가스가습조에 용해되어서 바이오필터로 인입되는 가습된 feed에서 황화수소가 검지되지 않았다. 폐가스 가습조(유동상호기 및 무산소조)에서의 nitrate 농도는 무산소조에서 발생하는 탈질반응 때문에 무산소조 경우가 유동상호기조보다 약 3 ppm 정도 낮았다. 또한 폐가스가습조의 용존 암모니아 농도는 실험 시작부터 1,500~2,000 ppm 사이의 높은 값을 유지하였는데, 이는 폐가스 가습조 내부에 있는 용수에 포함된 염화암모늄 및 기타 암모니아성 질소원에 기인한다고 간주된다.

하이브리드 연삭시스템 초음파 공구 개발 (Development of Ultrasonic Grinding Wheel for Hybrid Grinding System)

  • 김경태;홍윤혁;박경희;이석우;최헌종;최영재
    • 한국정밀공학회지
    • /
    • 제30권11호
    • /
    • pp.1121-1128
    • /
    • 2013
  • Ultrasonic grinding system is that the ultrasonic vibration by ultrasonic actuator is applied on conventional grinding system during grinding process. The Ultrasonic vibration with a frequency of over 20kHz can reduce grinding forces and increase surface quality, material removal rate (MRR) and grinding wheel life. In addition, ultrasonic vibration assisted grinding can be used for the materials that are difficult to cut. In this paper, methodology for ultrasonic tools is studied based on finite element method, and in turn the ultrasonic tools are designed and fabricated. It is found that the ultrasonic tool can vibrate with a frequency of 20kHz and amplitude of $25{\mu}m$. In order to verify the machining performance, the grinding experiment is performed on titanium alloy. By applying ultrasonic vibration, the grinding force and temperature are reduced and MRR is increased compared with the conventional grinding.

체어사이드 CAD/CAM에서 사용하는 세라믹 소재 (Ceramic materials for chair side CAD/CAM)

  • 김희철
    • 대한심미치과학회지
    • /
    • 제23권1호
    • /
    • pp.16-26
    • /
    • 2014
  • CAD/CAM에서 사용할 수 있는 소재는 composite, ceramic, hybrid 그리고 metal이 있다. 그중에 진료실 CAD/CAM에서는 주로 monolithic ceramic 테크닉을 사용하는 데, monolithic ceramic 테크닉이란 한 가지 소재로만 제작하는 방법을 말한다. 블럭상태의 소재를 최종치아형태로 깎아 폴리싱해서 사용하거나, 열을 가해서 사용하는 방법으로, 기존의 도재 축조 작업이 필요 없다. 심미성에서는 다소 부족하지만, 1시간 안에 제작이 가능하므로 1회, 1일 방문으로 치료를 완료할 수 있고, 소재의 안정성이 높으며(녹이거나 상변화를 시키지 않음에 따라 왜곡이 생기거나 강도가 약해질 가능성이 적음), 컴퓨터 조작(CAD 작업)으로 치아를 디자인하여 제작하므로 진료실에서 쉽게 작업할 수 있다는 장점이 있다. 이 테크닉에 사용할 수 있는 소재를 임상적 관점에서 세대별로 따라 분류해 보았다.

액정 배향용 하이브리드 AlTiSrO/rGO 박막 제조 및 특성 평가 (Fabrication and characterization of hybrid AlTiSrO/rGO thin films for liquid crystal orientation)

  • 오병윤
    • 한국정보전자통신기술학회논문지
    • /
    • 제17권3호
    • /
    • pp.155-165
    • /
    • 2024
  • 환원된 산화 그래핀(rGO)을 알루미늄, 티타늄, 스트론튬이 혼합된 졸-겔 용액에 혼합하여 브러시 코팅법을 이용하여 액정배향용 하이브리드 박막을 제조하였다. 160, 260, 및 360℃에서 어닐링한 후 산화 반응의 차이를 관찰하였다. 박막 제조 과정에서 생성된 졸-겔 용액은 브러시 모의 전단 응력에 의해 수축력을 발생시켜 미세홈 구조를 형성하였다. 이러한 구조는 주사 전자 현미경 분석을 통해 확인되었으며, rGO의 존재가 명확하게 보였다. 어닐링 온도가 증가함에 따라서 박막 표면의 산화 및 환원 반응이 더욱 활성화되어 표면 혼합물의 강도가 증가하였다. 또한 혼합물의 강도를 증가시킴으로써 전기광학적 특성이 안정화되고 개선되었다. 더불어 전압-정전용량 값도 크게 향상되었다. 최종적으로 투과율 측정 결과 액정디스플레이의 액정 배향막으로 적용하기에 적합한 것으로 나타났다.

Evaluation of the repair capacities and color stabilities of a resin nanoceramic and hybrid CAD/CAM blocks

  • Bahadir, Hasibe Sevilay;Bayraktar, Yusuf
    • The Journal of Advanced Prosthodontics
    • /
    • 제12권3호
    • /
    • pp.140-149
    • /
    • 2020
  • PURPOSE. This study evaluated the color stabilities of two computer-aided design and computer-aided manufacturing (CAD/CAM) blocks and a nanofill composite resin and the microtensile bond strength (µTBS) between the materials. MATERIALS AND METHODS. Twelve specimens of 4 mm height were prepared for both Lava Ultimate (L) and Vita Enamic (E) CAD/CAM blocks. Half of the specimens were thermocycled (10,000 cycle, 5° to 55℃) for each material. Both thermocycled and non-thermocycled specimens were surface treated with one of the three different methods (Er,Cr:YSGG laser, bur, or control). For each surface treatment group, one of the thermocycled and one of non-thermocycled specimens were restored using silane (Ceramic Primer II), universal adhesive (Single Bond Universal), and nanofill composite resin of 4-mm height (Filtek Ultimate). The other specimens were restored with the same procedure without using silane. For each group, 1 × 1 × 8 mm bar specimens were prepared using a microcutting device. Bar specimens were thermocycled (10,000 cycle, 5° to 55℃) and microtensile tests were performed. Staining of the materials in coffee solution was also compared using a spectrophotometer. Data were analyzed using one-way ANOVA, t-test and post-hoc Scheffe tests. RESULTS. µTBS were found similar between the thermocycled and non-thermocycled groups (P>.05). The highest µTBS (20.818 MPa) was found in the non-thermocycled, bur-ground, silane-applied E group. Silane increased µTBS at some E groups (P<.05). Composite resin specimens showed more staining than CAD/CAM blocks (P<.05). CONCLUSION. CAD/CAM blocks can be repaired with composite resins after proper surface treatments. Using silane is recommended in repair process. Color differences may be shown between CAD/CAM blocks and the nanofill composite after a certain time period.

바코팅 공정을 이용한 유기 발광 다이오드 특성 향상 (Improvement of Inverted Hybrid Organic Light-emitting Diodes Properties with Bar-coating Process)

  • 곽선우;유종수;한현숙;김정수;이택민;김인영
    • 한국정밀공학회지
    • /
    • 제30권6호
    • /
    • pp.589-595
    • /
    • 2013
  • Solution processed conjugated molecules enable to manufacture various electronic devices by unconventional and cost effective patterning methods as screen or gravure printing. Spin-coating is the most popularly used method to form conjugated polymeric film for various electronic devices. The coating method has certain disadvantages such as a large amount of unwanted wastes, difficulty forming a film with a large area, and impossible to apply roll-to-roll manufacturing. We present here a promising alternative coating method, bar-coating for conjugated polymer film and OLED with the bar coated light emitting layer. In this papers, we show atomic force microscope images of spin- and bar-coated Poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4,8-diyl)] (F8BT) films on substrate. The bar-coated film showed a slight lower RMS roughness (1.058 [nm]) than spin-coated film (1.767 [nm]). It means the bar-coating is suitable method to form light emitting layers in OLEDs. By using bar-coating process, an OLED obtained with 4.7 [cd/A] in maximum current efficiency.

나노 구리-니켈 혼합분말의 충격압축법을 통한 복합벌크재의 제조 및 특성평가 (Manufacturing and Evaluation of the Properties of Hybrid Bulk Material by Shock-compaction of Nanocrystalline Cu-Ni Mixed Powder)

  • 김우열;안동현;박이주;김형섭
    • 한국분말재료학회지
    • /
    • 제21권3호
    • /
    • pp.196-201
    • /
    • 2014
  • In this study, nanocrystalline Cu-Ni bulk materials with various compositions were cold compacted by a shock compaction method using a single-stage gas gun system. Since the oxide layers on powder surface disturbs bonding between powder particles during the shock compaction process, each nanopowder was hydrogen-reduced to remove the oxide layers. X-ray peak analysis shows that hydrogen reduction successfully removed the oxide layers from the nano powders. For the shock compaction process, mixed powder samples with various compositions were prepared using a roller mixer. After the shock compaction process, the density of specimens increased up to 95% of the relative density. Longitudinal cross-sections of the shock compacted specimen demonstrates that a boundary between two powders are clearly distinguished and agglomerated powder particles remained in the compacted bulk. Internal crack tended to decrease with an increase in volumetric ratio of nano Cu powders in compacted bulk, showing that nano Cu powders has a higher coherency than nano Ni powders. On the other hand, hardness results are dominated by volume fraction of the nano Ni powder. The crystalline size of the shock compacted bulk materials was greatly reduced from the initial powder crystalline size since the shock wave severely deformed the powders.

고강성 경량 MHEV 배터리 하우징 성형기술개발을 위한 섬유강화 플라스틱 발포 사출 시험편의 기계적 물성평가에 관한 연구 (A Study on Mechanical Properties Evaluation of Fiber-reinforced Plastic Cellular Injection-molded Specimens for the Development of High-strength Lightweight MHEV Battery Housing Molding Technology)

  • 정의철;김용대;이정원;이성희
    • Design & Manufacturing
    • /
    • 제17권3호
    • /
    • pp.55-60
    • /
    • 2023
  • The fiber-reinforced plastics and cellular injection molding process can be used to efficiently reduce the weight of battery housing components of mild hybrid electronic vehicles(MHEV) made of metal. However, the fiber orientation of fiber-reinforced plastics and the growth of foaming cells are intertwined during the injection molding process, so it is difficult to predict the mechanical properties of products in the design process. Therefore, it is necessary to evaluate the mechanical properties of the materials prior to the efficient stiffness design of the target product. In this study, a study was conducted to evaluated the mechanical properties of fiber reinforced cellular injection-molded specimens. Two types of fiber-reinforced plastics that can be used in the target product were evaluated for changes in tensile properties of cellular injection-molded specimens depending on the foaming ratio and position from the injection gate. The PP and PA66 specimens showed a decrease of tensile modulus and strength of approximately 30% and 17% depending on the foaming ratio, respectively. Also, the tensile strength decreased approximately 26% and 17% depending on the position from the injection gate, respectively. As a result, it was confirmed that the PP specimens have a significantly mechanical property degradation compared to the PA66 specimens depending on the foaming ratio and position.

마이크로 그라비어 코터를 이용한 박막 형성 기술 (Technology of thin Film Formation by Using the Micro Gravure Coater)

  • 김동수;김정수;배성우
    • 한국정밀공학회지
    • /
    • 제30권6호
    • /
    • pp.596-600
    • /
    • 2013
  • We report here on the processing and manufacturing of thin film for printed electronics by micro-gravure coating system. The micro-gravure coating systems are consisted of various modules such as web and system tension controller, micro-gravure coating units, dispenser and hybrid dry units (UV, NIR, Hot air). Especially, for the optimization of system, the number of idle roller was minimized and tension isolating infeeder was included. Also, we applied four patterns circle, 45 degree, square and 35 degree for the optimizing coating thickness. The micro-gravure coating system which applied various patterns to enable continuous coating process and fast coating time compare with conventional batch coating system. In this paper, introduce of micro-gravure coating system and testing results of coating thickness (20~700nm), coating time (1~2sec) and surface roughness (3~12nm) by using micro-gravure coating system.

원목(Solidwood)과 아크릴(Acrylic)의 접합을 이용한 테이블 디자인 연구 (Study on Table Design that Used Harmonization of Solidwood and Acrylic)

  • 위진석;윤여항
    • 한국가구학회지
    • /
    • 제24권2호
    • /
    • pp.140-147
    • /
    • 2013
  • In the latest furniture design field, we can find mass production with concept of heterogeneity that is made by harmonizing existing object with other object, which has new value. In order to follow the trend in the reality, various design process method that applied concept of Hybrid is attempted by flexibly combining or changing heterogeneous materials, formations or functions such as combination of new material and wood or IT. However, not like other design fields, its research range in furniture design is limited. This study is conducted in order to overcome and supplement problems that are made when these different materials are combined, such as faults or cracks made due to difference of expansion and contraction coefficient, lack of intensity and change of formation due to external temperature and humidity. Panels that are combined for this study were verified materials that have passed environmental adaptation test throughout the period of 1 year and 2 months, which will be made into a table. By doing this, this study will be an empirical study that establish concept of furniture made with acrylic and provides manufacturing method of combining wood and acrylic. Finally it proposed a new furniture design method that follows the trend by researching new materials with the new concept.

  • PDF