• Title/Summary/Keyword: Hybrid learning

Search Result 565, Processing Time 0.023 seconds

Feature selection and prediction modeling of drug responsiveness in Pharmacogenomics (약물유전체학에서 약물반응 예측모형과 변수선택 방법)

  • Kim, Kyuhwan;Kim, Wonkuk
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.2
    • /
    • pp.153-166
    • /
    • 2021
  • A main goal of pharmacogenomics studies is to predict individual's drug responsiveness based on high dimensional genetic variables. Due to a large number of variables, feature selection is required in order to reduce the number of variables. The selected features are used to construct a predictive model using machine learning algorithms. In the present study, we applied several hybrid feature selection methods such as combinations of logistic regression, ReliefF, TurF, random forest, and LASSO to a next generation sequencing data set of 400 epilepsy patients. We then applied the selected features to machine learning methods including random forest, gradient boosting, and support vector machine as well as a stacking ensemble method. Our results showed that the stacking model with a hybrid feature selection of random forest and ReliefF performs better than with other combinations of approaches. Based on a 5-fold cross validation partition, the mean test accuracy value of the best model was 0.727 and the mean test AUC value of the best model was 0.761. It also appeared that the stacking models outperform than single machine learning predictive models when using the same selected features.

Sintering process optimization of ZnO varistor materials by machine learning based metamodel (기계학습 기반의 메타모델을 활용한 ZnO 바리스터 소결 공정 최적화 연구)

  • Kim, Boyeol;Seo, Ga Won;Ha, Manjin;Hong, Youn-Woo;Chung, Chan-Yeup
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.6
    • /
    • pp.258-263
    • /
    • 2021
  • ZnO varistor is a semiconductor device which can serve to protect the circuit from surge voltage because its non-linear I-V characteristics by controlling the microstructure of grain and grain boundaries. In order to obtain desired electrical properties, it is important to control microstructure evolution during the sintering process. In this research, we defined a dataset composed of process conditions of sintering and relative permittivity of sintered body, and collected experimental dataset with DOE. Meta-models can predict permittivity were developed by learning the collected experimental dataset on various machine learning algorithms. By utilizing the meta-model, we can derive optimized sintering conditions that could show the maximum permittivity from the numerical-based HMA (Hybrid Metaheuristic Algorithm) optimization algorithm. It is possible to search the optimal process conditions with minimum number of experiments if meta-model-based optimization is applied to ceramic processing.

Using machine learning to forecast and assess the uncertainty in the response of a typical PWR undergoing a steam generator tube rupture accident

  • Tran Canh Hai Nguyen ;Aya Diab
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3423-3440
    • /
    • 2023
  • In this work, a multivariate time-series machine learning meta-model is developed to predict the transient response of a typical nuclear power plant (NPP) undergoing a steam generator tube rupture (SGTR). The model employs Recurrent Neural Networks (RNNs), including the Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and a hybrid CNN-LSTM model. To address the uncertainty inherent in such predictions, a Bayesian Neural Network (BNN) was implemented. The models were trained using a database generated by the Best Estimate Plus Uncertainty (BEPU) methodology; coupling the thermal hydraulics code, RELAP5/SCDAP/MOD3.4 to the statistical tool, DAKOTA, to predict the variation in system response under various operational and phenomenological uncertainties. The RNN models successfully captures the underlying characteristics of the data with reasonable accuracy, and the BNN-LSTM approach offers an additional layer of insight into the level of uncertainty associated with the predictions. The results demonstrate that LSTM outperforms GRU, while the hybrid CNN-LSTM model is computationally the most efficient. This study aims to gain a better understanding of the capabilities and limitations of machine learning models in the context of nuclear safety. By expanding the application of ML models to more severe accident scenarios, where operators are under extreme stress and prone to errors, ML models can provide valuable support and act as expert systems to assist in decision-making while minimizing the chances of human error.

Information-Based Hybrid Modeling Framework on the Systematic use of Artificial Neural-Networks (구조모델 개선을 위한 정보기반 하이브리드 모델링 기법)

  • Kim, JunHee;Jamshid, Ghaboussi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.4
    • /
    • pp.363-372
    • /
    • 2012
  • In this study, a new information-based hybrid modeling framework is proposed. In the hybrid framework, a conventional mathematical model is complemented by the informational methods. The basic premise of the proposed hybrid methodology is that not all features of system response are amenable to mathematical modeling, hence considering informational alternatives. This may be because (i) the underlying theory is not available or not sufficiently developed, or (ii) the existing theory is too complex and therefore not suitable for modeling within building frame analysis. The role of informational methods is to model aspects that the mathematical model leaves out. Autoprogressive algorithm and self-learning simulation extract the missing aspects from a system response. In a hybrid framework, experimental data is an integral part of modeling, rather than being used strictly for validation processes. The potential of the hybrid methodology is illustrated through modeling complex hysteretic behavior of beam-to-column connections.

The Effects of Hybird simulation practice program for Nursing students using Complex Scenario (간호대학생을 위한 Hybrid 시뮬레이션 실습교육 프로그램의 효과: 복합 시나리오 적용)

  • Moon-Ji Choi;Kyeng-Jin Kim;MinJi Kim
    • Journal of Industrial Convergence
    • /
    • v.22 no.8
    • /
    • pp.73-83
    • /
    • 2024
  • The study attempted to examine the effects of hybrid simulation practice program on critical thinking disposition, self-efficacy, communication competency, and clinical competency of nursing students. The study was one group pre-test and post-test design. Data were collected between April 24 to May 5, 2023 from 35 nursing students. The collected data was analyzed using the SPSS 25.0 program, frequency analysis, mean, standard deviation, and paired t-test. Research results showed that nursing students' critical thinking disposition(t=7.01, p<.001), self-efficacy(t=2.17, p=.037), communication competency(t=2.70, p=.011), and clinical competency(t=6.60, p<.001) were improved after the simulation program. The hybrid simulation practice program is significant in that it applies various learning tools, including high-fidelity-low-fidelity-role play to strengthen the connection between nursing students' theory and practice.

Hybrid Intelligent System Using PSO/Bacterial Foraging and PID Controller Tuning

  • Kim Dong-Hwa
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.22-34
    • /
    • 2006
  • o GA-BF approach for improvement of learning and optimization in GA o GA-BF has better response on various test functions o Satisfactory PID controller tuning in AVR, motor vector control systems o Potentially useful in many practically important engineering optimization problems

  • PDF

Rule-Based Fuzzy-Neural Networks Using the Identification Algorithm of the GA Hybrid Scheme

  • Park, Ho-Sung;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.1
    • /
    • pp.101-110
    • /
    • 2003
  • This paper introduces an identification method for nonlinear models in the form of rule-based Fuzzy-Neural Networks (FNN). In this study, the development of the rule-based fuzzy neural networks focuses on the technologies of Computational Intelligence (CI), namely fuzzy sets, neural networks, and genetic algorithms. The FNN modeling and identification environment realizes parameter identification through synergistic usage of clustering techniques, genetic optimization and a complex search method. We use a HCM (Hard C-Means) clustering algorithm to determine initial apexes of the membership functions of the information granules used in this fuzzy model. The parameters such as apexes of membership functions, learning rates, and momentum coefficients are then adjusted using the identification algorithm of a GA hybrid scheme. The proposed GA hybrid scheme effectively combines the GA with the improved com-plex method to guarantee both global optimization and local convergence. An aggregate objective function (performance index) with a weighting factor is introduced to achieve a sound balance between approximation and generalization of the model. According to the selection and adjustment of the weighting factor of this objective function, we reveal how to design a model having sound approximation and generalization abilities. The proposed model is experimented with using several time series data (gas furnace, sewage treatment process, and NOx emission process data from gas turbine power plants).

Efficient Hybrid Transactional Memory Scheme using Near-optimal Retry Computation and Sophisticated Memory Management in Multi-core Environment

  • Jang, Yeon-Woo;Kang, Moon-Hwan;Chang, Jae-Woo
    • Journal of Information Processing Systems
    • /
    • v.14 no.2
    • /
    • pp.499-509
    • /
    • 2018
  • Recently, hybrid transactional memory (HyTM) has gained much interest from researchers because it combines the advantages of hardware transactional memory (HTM) and software transactional memory (STM). To provide the concurrency control of transactions, the existing HyTM-based studies use a bloom filter. However, they fail to overcome the typical false positive errors of a bloom filter. Though the existing studies use a global lock, the efficiency of global lock-based memory allocation is significantly low in multi-core environment. In this paper, we propose an efficient hybrid transactional memory scheme using near-optimal retry computation and sophisticated memory management in order to efficiently process transactions in multi-core environment. First, we propose a near-optimal retry computation algorithm that provides an efficient HTM configuration using machine learning algorithms, according to the characteristic of a given workload. Second, we provide an efficient concurrency control for transactions in different environments by using a sophisticated bloom filter. Third, we propose a memory management scheme being optimized for the CPU cache line, in order to provide a fast transaction processing. Finally, it is shown from our performance evaluation that our HyTM scheme achieves up to 2.5 times better performance by using the Stanford transactional applications for multi-processing (STAMP) benchmarks than the state-of-the-art algorithms.

Pattern Classification Using Hybrid Monte Carlo Neural Networks (변종 몬테 칼로 신경망을 이용한 패턴 분류)

  • Jeon, Seong-Hae;Choe, Seong-Yong;O, Im-Geol;Lee, Sang-Ho;Jeon, Hong-Seok
    • The KIPS Transactions:PartB
    • /
    • v.8B no.3
    • /
    • pp.231-236
    • /
    • 2001
  • 일반적인 다층 신경망에서 가중치의 갱신 알고리즘으로 사용하는 오류 역전과 방식은 가중치 갱신 결과를 고정된(fixed) 한 개의 값으로 결정한다. 이는 여러 갱신의 가능성을 오직 한 개의 값으로 고정하기 때문에 다양한 가능성들을 모두 수용하지 못하는 면이 있다. 하지만 모든 가능성을 확률적 분포로 표현하는 갱신 알고리즘을 도입하면 이런 문제는 해결된다. 이러한 알고리즘을 사용한 베이지안 신경망 모형(Bayesian Neural Networks Models)은 주어진 입력값(Input)에 대해 블랙 박스(Black-Box)와같은 신경망 구조의 각 층(Layer)을 거친 출력값(Out put)을 계산한다. 이 때 주어진 입력 데이터에 대한 결과의 예측값은 사후분포(posterior distribution)의 기댓값(mean)에 의해 계산할 수 있다. 주어진 사전분포(prior distribution)와 학습데이터에 의한 우도함수(likelihood functions)에 의해 계산한 사후확률의 함수는 매우 복잡한 구조를 가짐으로 기댓값의 적분계산에 대한 어려움이 발생한다. 따라서 수치해석적인 방법보다는 확률적 추정에 의한 근사 방법인 몬테 칼로 시뮬레이션을 이용할 수 있다. 이러한 방법으로서 Hybrid Monte Carlo 알고리즘은 좋은 결과를 제공하여준다(Neal 1996). 본 논문에서는 Hybrid Monte Carlo 알고리즘을 적용한 신경망이 기존의 CHAID, CART 그리고 QUEST와 같은 여러 가지 분류 알고리즘에 비해서 우수한 결과를 제공하는 것을 나타내고 있다.

  • PDF