• Title/Summary/Keyword: Hybrid joining

Search Result 162, Processing Time 0.022 seconds

Evaluation of Failure Mode and Strength on Baking Time of Adhesive for Hybrid Joining (접착제 경화시점에 따른 하이브리드 접합 파단모드 및 접합강도 평가)

  • Choi, Chul-Young;Saha, Dulal Chandra;Choi, Won-Ho;Kim, Jun-Ki;Kim, Jong-Hoon;Park, Yeong-Do
    • Journal of Welding and Joining
    • /
    • v.29 no.6
    • /
    • pp.49-55
    • /
    • 2011
  • With the development of pre-painted steel sheets for automotive body application, a new joining method is required such as hybrid joining with combination of adhesive bonding and mechanical joining. The objective of this study is to investigate the effect of pre- and post-baking of adhesive bonding on failure mode and strength of hybrid joining of automotive steel sheets. Experiments show that the hybrid joining exhibits better bonding strength and displacement than conventional adhesive joining and mechanical fastening each. Comparison of pre- and post-baked hybrid joining results suggested that baking at $160^{\circ}C$ after mechanical joining was found to have higher joining properties than pre-baking condition. The prebaking condition changed its fracture mode from interfacial to button fracture. The changes in fracture mode with post-baking of hybrid joining was attributed to variation in neck thickness and undercut of joint.

A Study on Tensile Shear Characteristics of Dissimilar Joining Between Pre-coated Automotive Metal Sheets and Galvanized Steels with the Self-Piercing Rivet and Hybrid Joining (Self-Piercing Rivet과 Hybrid Joining을 이용한 자동차용 선도장 칼라강판과 용융아연도금강판의 접합부 기계적 성질 평가)

  • Bae, Jin-Hee;Kim, Jae-Won;Choi, Ildong;Nam, Dae-Geun;Kim, Jun-Ki;Park, Yeong-Do
    • Journal of Welding and Joining
    • /
    • v.34 no.1
    • /
    • pp.59-67
    • /
    • 2016
  • The automotive manufactures increase their use of lightweight materials to improve fuel economy and energy usage has a significant influence on the choice of developing materials. To meet this requirements manufacturers are replacing individual body parts with lightweight metals, for these the process treating and painting surfaces is changing. The pre-coated steels are newly developed to avoid the conventional complex and non-environmental painting process in the body-in-white car manufacturing. The development of new joining techniques is critically needed for pre-coated steel sheets, which are electrically non-conductive materials. In the present study, dissimilar combination of pre-coated steel and galvanized steel sheets were joined by the self-piercing rivet, adhesive bonding and hybrid joining techniques. The tensile shear test and free falling high speed crash test were conducted to evaluate the mechanical properties of the joints. The highest tensile peak load with large deformation was observed for the hybrid joining process which has attained 48% higher than the self-piercing rivet. Moreover, the hybrid and adhesive joints were observed better strain energy compared to self-piercing rivet. The fractography analyses were revealed that the mixed mode of cohesive and interfacial fracture for both the hybrid and adhesive bonding joints.

Position welding for internal welded specimen using laser-GMA hybrid welding (내면 용접부재의 전자세 레이저-아크 하이브리드 용접 연구)

  • Ahn, Young-Nam;Kim, Cheolhee;Kim, Jeonghan
    • Journal of Welding and Joining
    • /
    • v.33 no.1
    • /
    • pp.54-60
    • /
    • 2015
  • Laser-arc hybrid welding has been considered as an effective pipe girth welding process since early 2000's. Tolerance for fit-up offsets such as gap and edge misalignment is one of most important requirements in pipe girth laser-arc hybrid welding, and several approaches using parameter optimization, a laser beam scanning and an arc oscillation have been tried. However the required offset tolerance has not been fully accomplished up to now and laser-arc hybrid welding has not been widely applied in pipeline construction than expected, despite of its high welding speed and deep penetration. In this study, internal welding was adopted to ensure the offset tolerance and sound back bead. The effect of welding parameters on bead shape was investigated at the flat position. Also tolerances for gap and edge misalignment were verified as 0.5 mm and 2.0 mm, respectively. The position welding trials were conducted at several welding positions from the flat to the overhead position in a downward direction. With the fixed welding speed, arc current for gas metal arc welding current and laser output power, adequate welding voltages for gas metal arc welding were suggested for each position.

Development of Laser-Rotating An Hybrid Welding Process (레이저-회전 아크 하이브리드 용접공정의 개발)

  • Kim, Cheol-Hee;Chae, Hyun-Byung;Lee, Chang-Woo;Kim, Jeong-Han;Rhee, Se-Hun
    • Journal of Welding and Joining
    • /
    • v.24 no.1
    • /
    • pp.88-92
    • /
    • 2006
  • Laser-rotating arc hybrid welding was introduced by combining $CO_2$ laser and rotating gas metal arc welding. While the arc rotation enhances the weld pool motion, it reduces the undercut formation which is one of most critical weld defects in the conventional laser-arc hybrid welding. This research investigated the bead characteristics according to the welding parameters such as frequency of rotation, welding voltage, shielding gas composition and interspacing distance between laser and we. The welding parameters were selected to reduce spatter generation and ensure sound weld beads fur bead welding and butt welding with various joint gaps. Gap bridging ability was improved, such that the sound weld beads were achieved for butt joint with up to 2mm joint sap, with no adjustment of CTWD(Contact tip-to-workpiece distance) and electrode diameter.

Effects of Hybria Welding Parameters on the Toughness of Weld Metal in Ship Structural Steel (조선용강재의 레이저-아크 하이브리드 용접금속부 충격인성에 미치는 용접변수의 영향)

  • Hong, Seung-Gab;Lee, Jong-Bong
    • Journal of Welding and Joining
    • /
    • v.24 no.6
    • /
    • pp.33-38
    • /
    • 2006
  • Since the 1990's, European shipbuilding industries introduced hybrid welding process in order to decrease thermal distortion of welded joints in passenger shipbuilding. In this study, we investigated effects of hybrid welding parameters on the toughness of weld metal using DH36 steel in order to obtain more sound welds in passenger shipbuilding. Type of leading process, joint gap distance and chemical composition of consumables were considerably correlated with the toughness of weld metal. Especially, the toughness was considerably increased with high-Ti containing consumables. In addition, hybrid welding speed increased by using plasma cut edges, the oxides layer of which increased absorption efficiency of laser beam.

Strength of Composite-to-Aluminum Bonding and Bolting Hybrid Joints (복합재-알루미늄 이종재료 하이브리드 체결부 강도 특성에 관한 연구)

  • Jung, Jae-Wo;Kim, Tae-Hwan;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.57-60
    • /
    • 2005
  • Composite-to-aluminum joins were tested to get failure loads and modes for three types of joins; adhesive bonding, bolt fastening, and adhesive-bolt hybrid joining. Film type adhesive FM73 and paste type adhesive Cytec EA9394S were used for aluminum and composite bonding to make a double-lap joint. A digital microscope camcorder was used to monitor the failure initiation and propagation. It was found that the hybrid joining is an effective method to strengthen the joint when the mechanical fastening is stronger than the bonding as in the case of using the paste type adhesive. On the contrary, when the strength of the bolted joint is lower than the strength of the bonded joint as in the joint with the film type adhesive, the bolt joining contribute little to the hybrid joint strength.

  • PDF

A Study on $CO_2$ Laser-TIG Hybrid Welding of Zinc-Coated Steel Sheet Part 2 : Relationship between Welding Parameters and Weldability (아연도금 강판의 $CO_2$ 레이저-TIG 하이브리드 용접에 관한 연구 Part 2 : 공정변수와 용접성과의 관계)

  • Kim, Cheol-Hee;Choi, Woong-Yong;Chae, Hyun-Byung;Kim, Jeong-Han;Rhee, Se-Hun
    • Journal of Welding and Joining
    • /
    • v.24 no.4
    • /
    • pp.27-31
    • /
    • 2006
  • Optimization of process parameters for laser-arc hybrid welding process is intrinsically sophisticated because the process has three kinds of parameters-arc, laser and hybrid welding parameters. In this paper, the relationship between weldability and several process parameters such as laser beam-arc distance, electrode height, welding current and welding speed, were investigated by the full factorial experimental design. Weld quality was evaluated by using weight of spatters which is related with the pore area. It was found that the weld quality was increased with the increases in laser beam-arc distance and welding current, and decreased with the increases in electrode height and welding speed.

A Study on $CO_2$ Laser-TIG Hybrid Welding of Zinc-Coated Steel Sheet Part 1: Analysis of Welding Phenomena (아연도금 강판의 $CO_2$ 레이저-TIG 하이브리드 용접에 관한 연구 Part 1 : 용접현상분석)

  • Kim, Cheol-Hee;Choi, Woong-Yong;Chae, Hyun-Byung;Kim, Jeong-Han;Rhee, Se-Hun
    • Journal of Welding and Joining
    • /
    • v.24 no.4
    • /
    • pp.22-26
    • /
    • 2006
  • In lap welding of zinc-coated steel, porosity formation is one of most significant weld defects, which is caused by zinc vapor generated between the steel sheets. Various solutions have been proposed in the past years but development of more effective method is a worthwhile subject to be investigated. In this study, autogenous laser welding and laser-TIG hybrid welding was applied to the lap welding of zinc-coated steel without gap, and weld pool behaviors were observed by using high speed camera and the porosity generation mechanism was analyzed. The weld defects were successfully eliminated by laser-TIG hybrid welding. This is because the leading TIG arc partially melted the upper sheet and vaporized/oxidized the coated zinc on the lapped surfaces prior to the trailing laser illuminating the specimen.