• 제목/요약/키워드: Hybrid fuzzy

검색결과 451건 처리시간 0.024초

FUZZY TORQUE CONTROL STRATEGY FOR PARALLEL HYBRID ELECTRIC VEHICLES

  • PU J.-H.;YIN C.-L.;ZHANG J.-W.
    • International Journal of Automotive Technology
    • /
    • 제6권5호
    • /
    • pp.529-536
    • /
    • 2005
  • This paper presents a novel design of a fuzzy control strategy (FCS) based on torque distribution for parallel hybrid electric vehicles (HEVs). An empirical load-regulating vehicle operation strategy is developed on the basis of analysis of the components efficiency map data and the overall energy conversion efficiency. The aim of the strategy is to optimize the fuel economy and balance the battery state-of-charge (SOC), while satisfying the vehicle performance and drivability requirements. In order to accomplish this strategy, a fuzzy inference engine with a rule-base extracted from the empirical strategy is designed, which works as the kernel of a fuzzy torque distribution controller to determine the optimal distribution of the driver torque request between the engine and the motor. Simulation results reveal that compared with the conventional strategy which uses precise threshold parameters the proposed FCS improves fuel economy as well as maintains better battery SOC within its operation range.

유도전동기 드라이브의 DTC를 위한 하이브리드 퍼지제어기 (Hybrid Fuzzy Controller for DTC of Induction Motor Drive)

  • 고재섭;최정식;정동화
    • 조명전기설비학회논문지
    • /
    • 제25권5호
    • /
    • pp.22-33
    • /
    • 2011
  • An induction motor operated with a conventional direct self controller(DSC) shows a sluggish response during startup and under changes of torque command. Fuzzy logic controller(FLC) is used in conjection with DSC to minimize these problems. A FLC chooses the switching states based on a set of fuzzy variables. Flux position, error in flux magnitude and error in torque are used as fuzzy state variables. Fuzzy rules are determinated by observing the vector diagram of flux and currents. This paper proposes hybrid fuzzy controller for direct torque control(DTC) of induction motor drives. The speed controller is based on adaptive fuzzy learning controller(AFLC), which provide high dynamics performances both in transient and steady state response. Flux position, error in flux magnitude and error in torque are used as FLC state variables. The speed is estimated with model reference adaptive system(MRAS) based on artificial neural network(ANN) trained on-line by a back-propagation algorithm. This paper is controlled speed using hybrid fuzzy controller(HFC) and estimation of speed using ANN. The performance of the proposed induction motor drive with HFC controller and ANN is verified by analysis results at various operation conditions.

Hybrid Induction Motor Control Using a Genetically Optimized Pseudo-on-line Method

  • Lee, Jong-seok;Jang, Kyung-won;J. F. Peters;Ahn, Tae-chon
    • Journal of Power Electronics
    • /
    • 제4권3호
    • /
    • pp.127-137
    • /
    • 2004
  • This paper introduces a hybrid induction motor control using a genetically optimized pseudo-on-line method. Optimization results from the use of a look-up table based on genetic algorithms to find the global optimum of an unconstrained optimization problem. The approach to induction motor control includes a pseudo-on-line procedure that optimally estimates parameters of a fuzzy PID (FPID) controller. The proposed hybrid genetic fuzzy PID (GFPID) controller is applied to speed control of a 3-phase induction motor and its computer simulation is carried out. Simulation results show that the proposed controller performs better than conventional FPID and PID controllers. The contribution of this paper is the introduction of a high performance hybrid form of induction motor control that makes on-line and real-time control of the drive system possible.

하이브리드 자동 동조 알고리즘을 이용한 하이브리드 퍼지 제어기 (The Hybrid Fuzzy Controller using the Hybrid Auto-tuning Algorithm)

  • 이대근;김중영;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.521-523
    • /
    • 1999
  • In this paper, we propose the hybrid fuzzy controller(HFC) and the hybrid auto-tuning algorithm. The proposed HFC combined a PID controller with a fuzzy controller concurrently produces the better output performance such as sensitivity improvement in steady state and robustness in transient state than any other controller. In addition, a hybrid auto-tuning algorithm which consists of genetic algorithm and complex algorithm to automatically generate weighting factor, scaling factors and PID control gains optimizes the output of HFC. As an typical example of non-linear system in control theory an inverted pendulum will be controlled by the suggested HFC and illustrated the performance and applicability of this proposed method by simulation.

  • PDF

FAM 제어기를 이용한 IPMSM 드라이브의 하이브리드 PI 제어기 (Hybrid PI Controller of IPMSM Drive using FAM Controller)

  • 고재섭;최정식;정동화
    • 제어로봇시스템학회논문지
    • /
    • 제13권3호
    • /
    • pp.192-197
    • /
    • 2007
  • This paper presents Hybrid PI controller of IPMSM drive using fuzzy adaptive mechanism(FAM) control. In general, PI controller in computer numerically controlled machine process fixed gain. They may perform well under some operating conditions, but not all. To increase the robustness, fixed gain PI controller, Hybrid PI controller proposes a new method based self tuning PI controller. Hybrid PI controller is developed to minimize overshoot and settling time following sudden parameter changes such as speed, load torque, inertia, rotor resistance and self inductance. The results on a speed controller of IPMSM are presented to show the effectiveness of the proposed gain tuner. And this controller is better than the fixed gains one in terms of robustness, even under great variations of operating conditions and load disturbance.

축소 모델을 이용한 하이브리드 스미스 퍼지 제어기 설계 (Design of Hybrid Smith-Predictor Fuzzy Controller Using Reduction Model)

  • 조준호;황형수
    • 제어로봇시스템학회논문지
    • /
    • 제13권5호
    • /
    • pp.444-451
    • /
    • 2007
  • In this paper, we propose an improved reduction model and a reduction model-based hybrid smith-predictor fuzzy controller. The transient and steady-state responsed of the reduction model was evaluated. In tuning the controller, the parameters of PID and the factors fuzzy controllers were obtained from the reduced model and by using genetic algorithms, respectively. Simulation examples demonstrated a better performance of the proposed controller than conventional ones.

입력 공간 분할에 따른 뉴로-퍼지 시스템과 응용 (Neuro-Fuzzy System and Its Application by Input Space Partition Methods)

  • 곽근창;유정웅
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 추계학술대회 학술발표 논문집
    • /
    • pp.433-439
    • /
    • 1998
  • In this paper, we present an approach to the structure identification based on the input space partition methods and to the parameter identification by hybrid learning method in neuro-fuzzy system. The structure identification can automatically estimate the number of membership function and fuzzy rule using grid partition, tree partition, scatter partition from numerical input-output data. And then the parameter identification is carried out by the hybrid learning scheme using back-propagation and least squares estimate. Finally, we sill show its usefulness for neuro-fuzzy modeling to truck backer-upper control.

  • PDF

Analogue-Digital Hybrid Circuit for an Adaptive Fuzzy Network

  • Han, Il-Song
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.838-841
    • /
    • 1993
  • This paper describes a fuzzy network circuit of analogue and digital mixed operation. The circuits are suggested for membership function, MIN function and normalization function using either linear voltage-controlled MOSFET resistance or pulse stream operation. The analogue-digital hybrid fuzzy hardware is extensible to the fuzzy-neural network as its basic configurations are already used in URAN-I of 135,424 synaptic connections.

  • PDF

MR 감쇠기와 FPS를 이용한 하이브리드 면진장치의 수치해석적 연구 (Numerical Study of Hybrid Base-isolator with Magnetorheological Damper and Friction Pendulum System)

  • 김현수
    • 한국지진공학회논문집
    • /
    • 제9권2호통권42호
    • /
    • pp.7-15
    • /
    • 2005
  • 본 연구에서는 하이브리드 면진장치가 설치된 단자유도 구조물의 동적거동을 예측할 수 있는 수치해석모델을 제안한다. 하이브리드 면진장치는 MR 감쇠기와 마찰진자시스템(FPS)으로 구성된다. MR감쇠기의 동적거동을 모형화하기 위하여 뉴로-퍼지 모델을 사용한다. 다양한 변위, 속도, 전압의 조합을 사용하여 MR 감쇠기의 성능실험을 수행한 후 얻어진 데이터를 이용하여 MR 감쇠기 뉴로-퍼지 모델을 ANFIS로 학습시킨다. FPS의 모형화는 본 연구에서 유도한 비선형 모델식에 근거하여 뉴로-퍼지 모형화방법을 사용하여 이루어진다. 본 연구에서는 MR 감쇠기로 전달되는 제어전압을 조절하기 위하여 퍼지논리제어기를 사용한다. 다양한 지진하중을 사용한 진동대 실험을 통하여 얻은 실험체의 동적응답과와 뉴로-퍼지 모형화방법을 사용한 수치해석의 결과를 비교한다. 뉴로-퍼지 모델을 사용하여 MR 감쇠기와 FPS를 모형화해서 수치해석을 수행한 결과 하이브리드 면진장치의 동적거동을 매우 정확하게 예측할 수 있었다.

FUEL ECONOMY IMPROVEMENT FOR FUEL CELL HYBRID ELECTRIC VEHICLES USING FUZZY LOGIC-BASED POWER DISTRIBUTION CONTROL

  • Ahn, H.S.;Lee, N.S.;Moon, C.W.;Jeong, G.M.
    • International Journal of Automotive Technology
    • /
    • 제8권5호
    • /
    • pp.651-658
    • /
    • 2007
  • This paper presents a new type of fuzzy logic-based power control strategy for fuel cell hybrid electric vehicles designed to improve their fuel economy while maintaining the battery's state of charge. Since fuel cell systems have inherent limitations, such as a slow response time and low fuel efficiency, especially in the low power region, a battery system is typically used to assist them. To maximize the advantages of this hybrid type of configuration, a power distribution control strategy is required for the two power sources: the fuel cell system and the battery system. The required fuel cell power is procured using fuzzy rules based on the vehicle driving status and the battery status. In order to show the validity and effectiveness of the proposed power control strategy, simulations are performed using a mid-size vehicle for three types of standard drive cycle. First, the fuzzy logic-based power control strategy is shown to improves the fuel economy compared with the static power control strategy. Second, the robustness of the proposed power control strategy is verified against several variations in system parameters.