• 제목/요약/키워드: Hybrid film

Search Result 533, Processing Time 0.036 seconds

Preparation and Characterization of Organic-inorganic Hybrid Composite Film with Plate-shaped Alumina by Electrophoretic Deposition as a Function of Aging Time of Sol-Gel Binder

  • Kim, Doo Hwan;Park, Hee Jeong;Choi, Jinsub;Lim, Hyung Mi
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.366-373
    • /
    • 2015
  • Sol-gel binder was prepared by hydrolysis and condensation reaction using boehmite sol and methyltrimethoxysilane as a function of aging-time. The coating slurry was composed of a plate-shape alumina in the sol-gel binder for the EPD process, in which particles dispersed in the slurry were deposited on the electrode under an electric field due to the surface charge. We studied the effects of three parameters: the content of boehmite, the aging time, and the applied voltage, on the physical, thermal, and electrical properties of the hybrid composite films by EPD. The amount of boehmite was 10 ~ 20 wt% and the aging time was 0.5 ~ 72, with a fixed amount of plate-shape alumina of 10 wt%. The condition of applied voltage was 5 ~ 30 V with a distance of 2 cm between the electrode during the EPD process. We confirmed that a structure of hybrid composite films of well-ordered plate alumina was deposited on the substrate when the film was prepared using a sol-gel binder composed of 15 wt% boehmite with 1 hr aging time and EPD at 10 V. The process shows a weight loss of 7% at $500^{\circ}C$ in TGA and a breakdown voltage of 8 kV at $87{\mu}m$.

Effects of multi-stacked hybrid encapsulation layers on the electrical characteristics of flexible organic field effect transistors

  • Seol, Yeong-Guk;Heo, Uk;Park, Ji-Su;Lee, Nae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.257-257
    • /
    • 2010
  • One of the critical issues for applications of flexible organic thin film transistors (OTFTs) for flexible electronic systems is the electrical stabilities of the OTFT devices, including variation of the current on/off ratio ($I_{on}/I_{off}$), leakage current, threshold voltage, and hysteresis, under repetitive mechanical deformation. In particular, repetitive mechanical deformation accelerates the degradation of device performance at the ambient environment. In this work, electrical stabilities of the pentacene organic thin film transistors (OTFTs) employing multi-stack hybrid encapsulation layers were investigated under mechanical cyclic bending. Flexible bottom-gated pentacene-based OTFTs fabricated on flexible polyimide substrate with poly-4-vinyl phenol (PVP) dielectric as a gate dielectric were encapsulated by the plasma-deposited organic layer and atomic layer deposited inorganic layer. For cyclic bending experiment of flexible OTFTs, the devices were cyclically bent up to $10^5$ times with 5mm bending radius. In the most of the devices after $10^5$ times of bending cycles, the off-current of the OTFT with no encapsulation layers was quickly increased due to increases in the conductivity of the pentacene caused by doping effects from $O_2$ and $H_2O$ in the atmosphere, which leads to decrease in the $I_{on}/I_{off}$ and increase in the hysteresis. With encapsulation layers, however, the electrical stabilities of the OTFTs were improved significantly. In particular, the OTFTs with multi-stack hybrid encapsulation layer showed the best electrical stabilities up to the bending cycles of $10^5$ times compared to the devices with single organic encapsulation layer. Changes in electrical properties of cyclically bent OTFTs with encapsulation layers will be discussed in detail.

  • PDF

A Case Study of Fluid Simulation in the Film 'Sector 7' (사례연구: 영화 '7광구'의 유체 시뮬레이션)

  • Kim, Sun-Tae;Lee, Jeong-Hyun;Kim, Dae-yeong;Park, Yeong-Su;Jang, Seong-Ho;Hong, Jeong-Mo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.18 no.3
    • /
    • pp.17-27
    • /
    • 2012
  • In this paper, we describe a case study of the film 'Sector 7' which was produced by technologies applied fluid simulation. For the CG scenes in the movie which include highly detailed fluid motions, we used smoothed particle hydrodynamics(SPH) technique to express subtle movements of seawater from a crashed huge tank, and used hybrid simulation method of particles and levelsets to describe bursting water from a submarine's broken canopy. We also used detonation shock dynamics(DSD) technique for detailed flame simulations to produce a burning monster, the film"s main character. At this point, the divergence-free vortex particle method was applied to conserve the incompressible property of fluids. In addition, we used an upsampling method to achieve more efficient video production. Consequently, we could produce the high-quality visual effects by using the domestic technologies.

Electron Trapping and Transport in Poly(tetraphenyl)silole Siloxane of Quantum Well Structure

  • Choi, Jin-Kyu;Jang, Seung-Hyun;Kim, Ki-Jeong;Sohn, Hong-Lae;Jeong, Hyun-Dam
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.158-158
    • /
    • 2012
  • A new kind of organic-inorganic hybrid polymer, poly(tetraphenyl)silole siloxane (PSS), was invented and synthesized for realization of its unique charge trap properties. The organic portions consisting of (tetraphenyl)silole rings are responsible for electron trapping owing to their low-lying LUMO, while the Si-O-Si inorganic linkages of high HOMO-LUMO gap provide the intrachain energy barrier for controlling electron transport. Such an alternation of the organic and inorganic moieties in a polymer may give an interesting quantum well electronic structure in a molecule. The PSS thin film was fabricated by spin-coating of the PSS solution in THF organic solvent onto Si-wafer substrates and curing. The electron trapping of the PSS thin films was confirmed by the capacitance-voltage (C-V) measurements performed within the metal-insulator-semiconductor (MIS) device structure. And the quantum well electronic structure of the PSS thin film, which was thought to be the origin of the electron trapping, was investigated by a combination of theoretical and experimental methods: density functional theory (DFT) calculations in Gaussian03 package and spectroscopic techniques such as near edge X-ray absorption fine structure spectroscopy (NEXAFS) and photoemission spectroscopy (PES). The electron trapping properties of the PSS thin film of quantum well structure are closely related to intra- and inter-polymer chain electron transports. Among them, the intra-chain electron transport was theoretically studied using the Atomistix Toolkit (ATK) software based on the non-equilibrium Green's function (NEGF) method in conjunction with the DFT.

  • PDF

Preparation and Properties of Silicone-Modified Epoxy Coating Materials (실리콘 변성 에폭시 코팅 액의 제조와 물성)

  • Kim, Jin Kyung;Bak, Seung Woo;Hwang, Hee Nam;Kang, Doo Whan;Kang, Ho Jong
    • Applied Chemistry for Engineering
    • /
    • v.25 no.4
    • /
    • pp.352-356
    • /
    • 2014
  • PDMS modified epoxy resin with epoxy group (EMPDMS) was prepared from the reaction of ${\alpha},{\omega}$-aminopropylpolydimethylsiloxane and diglycidyl ether of bisphenol-A (DGEBA) based epoxy resin, and PDMS modified epoxy hybrid compound (EMPDMSH) was prepared by introducing alkylesteraminopropyl alkoxy silane to EMPDMS. Their structures were characterized using FT-IR, $^1H$-NMR and $^{29}Si$-NMR. Coating materials were prepared by mixing EMPDMSH base and solvent. Physical properties of the coating materials coated on epoxy/glass fiber composite film were measured according to the content of PDMS in EMPDMSH. Contact angle of coating film was increased 30 to 71 degree. Adhesive property of coating film was 5B degree better then epoxy or acrylate coating materials, and surface roughness was decreased as increasing in EMPDMSH.

Observation of Diverse Aluminum Oxide Structures in a Phosphoric Acid Solution according to the Applied Anodization Voltage (인산용액에서 양극산화 인가전압에 따른 알루미늄 산화피막 성장 관찰)

  • Jeong, Chanyoung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.1
    • /
    • pp.35-39
    • /
    • 2019
  • To date, porous alumina structures have been implemented by electrochemical anodization technique. The anodizing methods can easy to make a porous aluminum oxide film with a regular arrangement, but oxide film with complex structure type such as pillar-on-pore is relatively difficult to implement. Therefore, this study aims to observe the change of anodized oxide pore size, thickness, and structure in a phosphoric acid solution according to applied anodization voltage conditions. For the implementation of hybrid composite oxide structures, it is possible to create by modulating anodization voltage. The experimental conditions were performed at the applied anodization voltage of 100 V and 120 V in 10% phosphoric acid solution, respectively. The experimental results were able to observe the structure of oxides in the form of porous and composite structures (pillar-on-pore), depending on each condition.

Fabrication and characterization of hybrid AlTiSrO/rGO thin films for liquid crystal orientation (액정 배향용 하이브리드 AlTiSrO/rGO 박막 제조 및 특성 평가)

  • Byeong-Yun Oh
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.3
    • /
    • pp.155-165
    • /
    • 2024
  • A hybrid thin film was prepared by doping reduced graphene oxide (rGO) into a sol-gel solution mixed with aluminum, titanium, and strontium using a brush coating method. The annealing temperature was carried out at 160, 260, and 360℃, and the difference in oxidation reaction was observed. The sol-gel solution created during the membrane manufacturing process generates a contractile force due to the shear stress of the brush bristles, forming a microgroove structure. This structure was confirmed through scanning electron microscopy analysis, and the presence of rGO was clearly revealed. As the annealing temperature increases, the oxidation and reduction reactions on the thin film surface become more active, so the intensity of the surface mixture increases. Moreover, the electro-optical properties were stabilized and improved by increasing the intensity of the mixtures. Likewise, the voltage-capacitance values are also significantly improved. Lastly, the transmittance measurement showed that it was suitable for liquid crystal display application.

Fabrication of a Hybrid Superhydrophobic/superhydrophilic Surface for Water Collection: Gravure Offset Printing & Colloidal Lithography (수분수집을 위한 초발수/초친수 복합 표면 제작: 그라비아 옵셋 프린팅과 콜로이달 리소그래피 공정)

  • Ji, Seung-Muk;Kim, In-Young;Kim, Eun-Hee;Jung, Jie-Un;Kim, Wan-Doo;Lim, Hyun-Eui
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.1
    • /
    • pp.19-24
    • /
    • 2012
  • We demonstrate the desert beetle back mimicking hybrid superhydrophilic/superhydrophobic patterned surface by using the combination method of colloidal lithography and gravure offset printing for nano and micro patterning, respectively. The two methods are cost-effective and industrially available techniques compared to the other nano/micro patterning methods. To verify the water collecting function of the hybrid surface, the water condensation behavior is investigated on the chilled surface in ambient temperature and high humidity. Due to the synergetic effect of drop and film wise condensation, the hybrid superhydrophobic/superhydrophilic surface shows the higher efficiency than one of single wettability surfaces. The work is underway to get the good patterns of hybrid surfaces for water collecting from the dew or fog.

Preparation of O-I hybrid sols using alkoxysilane-functionalized amphiphilic polymer precursor and their application for hydrophobic coating (알콕시 실란기능화 양친성 고분자 전구체를 이용한 유-무기 하이브리드 졸 제조 및 이를 이용한 발수 코팅)

  • Lee, Dae-Gon;Kim, Nahae;Kim, Hyo Won;Kim, Juyoung
    • Journal of Adhesion and Interface
    • /
    • v.20 no.4
    • /
    • pp.146-154
    • /
    • 2019
  • In this study, alkoxysilane-functionalized amphiphilic polymer (AFAP), which have hydrophilic segment and hydrophobic segment functionalized by alkoxysilane group at the same backbone, was synthesized and used as a dispersant and control agent for reaction rate in the preparation of colloidally stable organic-inorganic (O-I) hybrid sols. After reaction with fluorosilane compounds, fluorinated O-I hybrid sols were prepared and coated onto glass substrate to form hydrophobic O-I hybrid coating films through low-temperature curing process. Surface hardness and hydrophobicity of cured coating films were varied with type of solvent and composition of AFAP and fluorinated alkoxysilane compounds. At appropriate solvent and composition of fluorinated alkoxysilane compounds, O-I hybrid coating film having high transparency and surface hardness could be prepared, which could be applicable to cover window of solar cell and displays.

Adhesion and Proliferation Behavior of Retinal Pigment Epithelial Cells on Hesperidin/PLGA Films (헤스페리딘/PLGA 필름에서 망막색소상피세포의 부착과 증식거동)

  • Lee, So Jin;Kang, Su Ji;Kim, Hye Yun;Lee, Jung Hwan;Kim, Eun Young;Kwon, Soon Yong;Chung, Jin Wha;Joo, Choun-Ki;Khang, Gilson
    • Polymer(Korea)
    • /
    • v.38 no.1
    • /
    • pp.24-30
    • /
    • 2014
  • Retinal pigment epithelium (RPE) plays an important role in maintaining the visual function and the degeneration of the RPE causes several retinal degeneration disease. In order to fabricate the suitable carrier for RPE transplantation, the hybrid poly(lactide-co-glycolide) (PLGA) film with hesperidin was prepared. Hesperidin has an anti-inflammatory and antioxidant characteristics. ARPE-19 was seeded on hesperidin/PLGA film and then, cell proliferation was determined by the MTT assay, and cell adhesion and cell morphology were confirmed by SEM. Also, RT-PCR was performed to confirm the expression of the specific genes, and AEC immunohistochemical staining was performed to determine the expression of RPE65. As a result, we confirmed that attachment, proliferation and phenotype maintenance of RPE cells were more excellent on hesperidin/PLGA film than PLGA film, thereby we were able to confirm the potential applications of hesperidin/PLGA film as tissue engineering carrier for regeneration of retina.