• 제목/요약/키워드: Hybrid energy systems

검색결과 447건 처리시간 0.023초

나노여과 기반 용량성 탈이온화의 진전 (Progress in Nanofiltration-Based Capacitive Deionization)

  • 심정환;라즈쿠마 파텔
    • 멤브레인
    • /
    • 제34권2호
    • /
    • pp.87-95
    • /
    • 2024
  • 최근 연구는 역삼투압(RO), 나노여과(NF) 및 전기투석(ED)과 같은 막 공정에서 고급 용량성 탈이온화(CDI) 및 막 변형(MCDI)을 포함하는 광범위한 담수화 및 수처리 방법을 탐구합니다. 비교 분석은 저염도 시나리오에서 ED의 비용 효율성을 보여주는 반면 하이브리드 시스템(NF-MCDI, RO-NF-MCDI)은 향상된 염 제거 및 에너지 효율성을 보여줍니다. 새로운 이온 분리 방법(NF-CDI, NF-FCDI)은 향상된 효율성과 에너지 절감을 제공합니다. 이러한 연구는 또한 다양한 산업에 특정한 복잡한 폐수를 처리하는 데 있어 이러한 방법의 효율성을 강조합니다. 환경 영향 평가는 시스템 선택의 지속 가능성의 필요성을 강조합니다. 또한 마이크로 제작된 센서를 멤브레인에 통합하면 실시간 모니터링이 가능하여 기술 개발이 진전됩니다. 이러한 연구는 새로운 담수화 및 수처리 기술의 다양성과 가능성을 강조합니다. 이는 효율성 향상, 에너지 사용 최소화, 산업별 문제 해결 및 기존 방법 한계를 능가하는 혁신을 위한 귀중한 통찰력을 제공합니다. 다양한 응용 분야에서 효율성 향상, 환경 영향 최소화 및 적응성 보장에 초점을 맞춘 지속적인 발전으로 지속 가능한 수처리의 미래는 밝습니다.

설비공학 분야의 최근 연구 동향 : 2016년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2016)

  • 이대영;김사량;김현정;김동선;박준석;임병찬
    • 설비공학논문집
    • /
    • 제29권6호
    • /
    • pp.327-340
    • /
    • 2017
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2016. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of flow, heat and mass transfer, the reduction of pollutant exhaust gas, cooling and heating, the renewable energy system and the flow around buildings. CFD schemes were used more for all research areas. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results of the long-term performance variation of the plate-type enthalpy exchange element made of paper, design optimization of an extruded-type cooling structure for reducing the weight of LED street lights, and hot plate welding of thermoplastic elastomer packing. In the area of pool boiling and condensing, the heat transfer characteristics of a finned-tube heat exchanger in a PCM (phase change material) thermal energy storage system, influence of flow boiling heat transfer on fouling phenomenon in nanofluids, and PCM at the simultaneous charging and discharging condition were studied. In the area of industrial heat exchangers, one-dimensional flow network model and porous-media model, and R245fa in a plate-shell heat exchanger were studied. (3) Various studies were published in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, subjects include mobile cold storage heat exchanger, compressor reliability, indirect refrigeration system with $CO_2$ as secondary fluid, heat pump for fuel-cell vehicle, heat recovery from hybrid drier and heat exchangers with two-port and flat tubes. In the alternative refrigeration/energy system category, subjects include membrane module for dehumidification refrigeration, desiccant-assisted low-temperature drying, regenerative evaporative cooler and ejector-assisted multi-stage evaporation. In the system control category, subjects include multi-refrigeration system control, emergency cooling of data center and variable-speed compressor control. (4) In building mechanical system research fields, fifteenth studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, renewable energies, etc. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which could be help for improving the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the analyses of indoor thermal environments controlled by portable cooler, the effects of outdoor wind pressure in airflow at high-rise buildings, window air tightness related to the filling piece shapes, stack effect in core type's office building and the development of a movable drawer-type light shelf with adjustable depth of the reflector. The subjects of building energy were worked on the energy consumption analysis in office building, the prediction of exit air temperature of horizontal geothermal heat exchanger, LS-SVM based modeling of hot water supply load for district heating system, the energy saving effect of ERV system using night purge control method and the effect of strengthened insulation level to the building heating and cooling load.

단독주택용 태양열/지열 융복합시스템의 태양열 급탕성능 평가 (An Evaluation of the Solar Thermal Performance of the Solar/Geo Thermal Hybrid Hot Water System for a Detached House)

  • 백남춘;한승현;이왕제;신우철
    • 설비공학논문집
    • /
    • 제27권11호
    • /
    • pp.581-586
    • /
    • 2015
  • In this study, an analysis was performed on the performance of the solar water heating system with geo-thermal heat pump for a detached house. This system has a flat plate solar collector ($8\;m^2$) and a 3 RT heat pump. The heat pump acts as an auxiliary heater of the solar water heating system. These systems were installed at four individual houses with the same area of $100\;m^2$. The monitoring results for one year are as follows. (1) The average daily operating time of the solar system appeared to be 313 minutes in spring (intermediate season), and 135 minutes and 76 minutes in winter and summer respectively. The reason for the short operating time in summer is the high storage temperature due to low water heating load. The high storage temperature is caused by a decrease in collecting efficiency as well as by overheating. (2) The geothermal heat pump as an auxiliary heater mainly operates on days of poor insolation during the winter season. (3) Despite controlling for total house area, hot water consumption varies greatly according to the number of people in the family, hot water usage habits, etc. (4) The yearly solar fraction was 69.8 to 91.5 percent, which exceeds the maximum value of 80% as recommended by ASHRAE. So the solar collector area of $8\;m^2$ appeared to be somewhat greater for the house with an area of $100\;m^2$. (5) The observed annual efficiency of solar systems was relatively low at 13.5 to 23.6%, which was analyzed to be due to the decrease in thermal efficiency and the overheating caused by a high solar fraction.

전기자동차용 고신뢰성 파워모듈 패키징 기술 (Power Module Packaging Technology with Extended Reliability for Electric Vehicle Applications)

  • 윤정원;방정환;고용호;유세훈;김준기;이창우
    • 마이크로전자및패키징학회지
    • /
    • 제21권4호
    • /
    • pp.1-13
    • /
    • 2014
  • The paper gives an overview of the concepts, basic requirements, and trends regarding packaging technologies of power modules in hybrid (HEV) and electric vehicles (EV). Power electronics is gaining more and more importance in the automotive sector due to the slow but steady progress of introducing partially or even fully electric powered vehicles. The demands for power electronic devices and systems are manifold, and concerns besides aspects such as energy efficiency, cooling and costs especially robustness and lifetime issues. Higher operation temperatures and the current density increase of new IGBT (Insulated Gate Bipolar Transistor) generations make it more and more complicated to meet the quality requirements for power electronic modules. Especially the increasing heat dissipation inside the silicon (Si) leads to maximum operation temperatures of nearly $200^{\circ}C$. As a result new packaging technologies are needed to face the demands of power modules in the future. Wide-band gap (WBG) semiconductors such as silicon carbide (SiC) or gallium nitride (GaN) have the potential to considerably enhance the energy efficiency and to reduce the weight of power electronic systems in EVs due to their improved electrical and thermal properties in comparison to Si based solutions. In this paper, we will introduce various package materials, advanced packaging technologies, heat dissipation and thermal management of advanced power modules with extended reliability for EV applications. In addition, SiC and GaN based WBG power modules will be introduced.

Drive Circuit of 4-Level Inverter for 42V Power System

  • Park, Yong-Won;Sul, Seung-Ki
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제11B권3호
    • /
    • pp.112-118
    • /
    • 2001
  • In the near future, the voltage of power system for passenger vehicle will be changed to 42V from existing 14V./ Because of increasing power and voltage ratings used in the vehicle the motor drive system has high switching dv/dt and it generates electromagnetic interference (EMI) To solve these problems multi-level inverter system may be used The feature of multi-level inverter is the output voltage to be synthesized from several levels of voltage Because of this feature high switching dv/dt and EMI can be reduced in the multi-level inverter system But as the number of level is increased manufacturing cost is getting expensive and system size is getting large. Because of these disadvantages the application of multi-level inverter has been restricted only to high power drives. The method to reduce manufacturing cost and system size is to integrate circuit of multi-level inverter into a few chips But isolated power supply and signal isolation circuit using transformer or opto-coupler for drive circuit are obstacles to implement the integrated circuit (IC) In this paper a drive circuit of 4-level inverter suitable for integration to hybrid or one chip is proposed In the proposed drive circuit DC link voltage is used directly as the power source of each gate drive circuit NPN transistors and PNP transistors are used to isolate to transfer the control signals. So the proposed drive circuit needs no transformers and opto-couplers for electrical isolation of drive circuit and is constructed only using components to be implemented on a silicon wafer With th e proposed drive circuit 4- level inverter system will be possible to be implemented through integrated circuit technology Using the proposed drive circuit 4- level inverter system is constructed and the validity and characteristics of the proposed drive circuit are proved through the experiments.

Optical Fiber Daylighting System Combined with LED Lighting and CPV based on Stepped Thickness Waveguide for Indoor Lighting

  • Vu, Ngoc Hai;Shin, Seoyong
    • Journal of the Optical Society of Korea
    • /
    • 제20권4호
    • /
    • pp.488-499
    • /
    • 2016
  • We present a design and optical simulation of a cost-effective hybrid daylighting/LED system composed of mixing sunlight and light-emitting diode (LED) illumination powered by renewable solar energy for indoor lighting. In this approach, the sunlight collected by the concentrator is split into visible and non-visible rays by a beam splitter. The proposed sunlight collector consists of a Fresnel lens array. The non-visible rays are absorbed by the solar photovoltaic devices to provide electrical power for the LEDs. The visible rays passing through the beam splitters are coupled to a stepped thickness waveguide (STW) by tilted mirrors and confined by total internal reflection (TIR). LEDs are integrated at the end of the STW to improve the lighting quality. LEDs’ light and sunlight are mixed in the waveguide and they are coupled into an optical fiber bundle for indoor illumination. An optical sensor and lighting control system are used to control the LED light flow to ensure that the total output flux for indoor lighting is a fixed value when the sunlight is inadequate. The daylighting capacity was modeled and simulated with a commercial ray tracing software (LighttoolsTM). Results show that the system can achieve 63.8% optical efficiency at geometrical concentration ratio of 630. A required accuracy of sun tracking system achieved more than ±0.5o . Therefore, our results provide an important breakthrough for the commercialization of large scale optical fiber daylighting systems that are faced with challenges related to high costs.

중공사막 모듈을 이용한 정삼투 공정에서의 운영조건 변화에 따른 성능평가 (Performance evaluation of forward osmosis (FO) hollow fiber module with various operating conditions)

  • 김봉철
    • 상하수도학회지
    • /
    • 제32권4호
    • /
    • pp.357-361
    • /
    • 2018
  • Forward osmosis (FO) process has been attracting attention for its potential applications such as industrial wastewater treatment, wastewater reclamation and seawater desalination. Particularly, in terms of fouling reversibility and operating energy consumption, the FO process is assumed to be preferable to the reverse osmosis (RO) process. Despite these advantages, there is a difficulty in the empirical step due to the lack of separation and recovery techniques of the draw solution. Therefore, rather than using FO alone, recent developments of the FO process have adapted a hybrid system without draw solution separation/recovery systems, such as the FO-RO osmotic dilution system. In this study, we investigated the performance of the hollow fiber FO module according to various operating conditions. The change of permeate flow rate according to the flow rates of the draw and feed solutions in the process operation is a factor that increases the permeate flow rate, one of the performance factors in the positive osmosis process. Our results reveal that flow rates of draw and feed solutions affect the membrane performance, such as the water flux and the reverse solute flux. Moreover, use of hydraulic pressure on the feed side was shown to yield slightly higher flux than the case without applied pressure. Thus, optimizing the operating conditions is important in the hollow fiber FO system.

IGBT 전력반도체 모듈 패키지의 방열 기술 (Heat Dissipation Technology of IGBT Module Package)

  • 서일웅;정훈선;이영호;김영훈;좌성훈
    • 마이크로전자및패키징학회지
    • /
    • 제21권3호
    • /
    • pp.7-17
    • /
    • 2014
  • Power electronics modules are semiconductor components that are widely used in airplanes, trains, automobiles, and energy generation and conversion facilities. In particular, insulated gate bipolar transistors(IGBT) have been widely utilized in high power and fast switching applications for power management including power supplies, uninterruptible power systems, and AC/DC converters. In these days, IGBT are the predominant power semiconductors for high current applications in electrical and hybrid vehicles application. In these application environments, the physical conditions are often severe with strong electric currents, high voltage, high temperature, high humidity, and vibrations. Therefore, IGBT module packages involves a number of challenges for the design engineer in terms of reliability. Thermal and thermal-mechanical management are critical for power electronics modules. The failure mechanisms that limit the number of power cycles are caused by the coefficient of thermal expansion mismatch between the materials used in the IGBT modules. All interfaces in the module could be locations for potential failures. Therefore, a proper thermal design where the temperature does not exceed an allowable limit of the devices has been a key factor in developing IGBT modules. In this paper, we discussed the effects of various package materials on heat dissipation and thermal management, as well as recent technology of the new package materials.

Tier-based Proactive Path Selection Mode for Wireless Mesh Networks

  • Fu-Quan, Zhang;Joe, In-Whee;Park, Yong-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권5호
    • /
    • pp.1303-1315
    • /
    • 2012
  • In the draft of the IEEE 802.11s standard, a tree topology is established by the proactive tree-building mode of the Hybrid Wireless Mesh Protocol (HWMP). It is used for cases in which the root station (e.g., gateway) is an end point of the majority of the data connections. In the tree topology, the root or central stations (e.g., parent stations) are connected to the other stations (e.g., leaves) that are one level lower than the central station. Such mesh stations are likely to suffer heavily from contention in bottleneck links when the network has a high traffic load. Moreover, the dependence of the network on such stations is a point of vulnerability. A failure of the central station (e.g., a crash or simply going into sleep mode to save energy) can cripple the whole network in the tree topology. This causes performance degradation for end-to-end transmissions. In a connected mesh topology where the stations having two or more radio links between them are connected in such a way that if a failure subsists in any of the links, the other link could provide the redundancy to the network. We propose a scheme to utilize this characteristic by organizing the network into concentric tiers around the root mesh station. The tier structure facilitates path recovery and congestion control. The resulting mode is referred to as Tier-based Proactive Path Selection Mode (TPPSM). The performance of TPPSM is compared with the proactive tree mode of HWMP. Simulation results show that TPPSM has better performance.

Heuristic and Statistical Prediction Algorithms Survey for Smart Environments

  • Malik, Sehrish;Ullah, Israr;Kim, DoHyeun;Lee, KyuTae
    • Journal of Information Processing Systems
    • /
    • 제16권5호
    • /
    • pp.1196-1213
    • /
    • 2020
  • There is a growing interest in the development of smart environments through predicting the behaviors of inhabitants of smart spaces in the recent past. Various smart services are deployed in modern smart cities to facilitate residents and city administration. Prediction algorithms are broadly used in the smart fields in order to well equip the smart services for the future demands. Hence, an accurate prediction technology plays a vital role in the smart services. In this paper, we take out an extensive survey of smart spaces such as smart homes, smart farms and smart cars and smart applications such as smart health and smart energy. Our extensive survey is based on more than 400 articles and the final list of research studies included in this survey consist of 134 research papers selected using Google Scholar database for period of 2008 to 2018. In this survey, we highlight the role of prediction algorithms in each sub-domain of smart Internet of Things (IoT) environments. We also discuss the main algorithms which play pivotal role in a particular IoT subfield and effectiveness of these algorithms. The conducted survey provides an efficient way to analyze and have a quick understanding of state of the art work in the targeted domain. To the best of our knowledge, this is the very first survey paper on main categories of prediction algorithms covering statistical, heuristic and hybrid approaches for smart environments.