• 제목/요약/키워드: Hybrid energy systems

Search Result 447, Processing Time 0.024 seconds

Enhancing Wind Speed and Wind Power Forecasting Using Shape-Wise Feature Engineering: A Novel Approach for Improved Accuracy and Robustness

  • Mulomba Mukendi Christian;Yun Seon Kim;Hyebong Choi;Jaeyoung Lee;SongHee You
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.4
    • /
    • pp.393-405
    • /
    • 2023
  • Accurate prediction of wind speed and power is vital for enhancing the efficiency of wind energy systems. Numerous solutions have been implemented to date, demonstrating their potential to improve forecasting. Among these, deep learning is perceived as a revolutionary approach in the field. However, despite their effectiveness, the noise present in the collected data remains a significant challenge. This noise has the potential to diminish the performance of these algorithms, leading to inaccurate predictions. In response to this, this study explores a novel feature engineering approach. This approach involves altering the data input shape in both Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) and Autoregressive models for various forecasting horizons. The results reveal substantial enhancements in model resilience against noise resulting from step increases in data. The approach could achieve an impressive 83% accuracy in predicting unseen data up to the 24th steps. Furthermore, this method consistently provides high accuracy for short, mid, and long-term forecasts, outperforming the performance of individual models. These findings pave the way for further research on noise reduction strategies at different forecasting horizons through shape-wise feature engineering.

An experimental study on performance evaluation for development of compact steam unit applied with hybrid plate heat exchanger (하이브리드 판형 열교환기 적용 컴팩트 스팀 유닛 개발을 위한 성능 평가에 관한 실험적 연구)

  • Park, Jae-Hong;Cho, Sung-Youl;Lee, Jun-Seok;Lee, Sang-Rae;Kim, Seung-Hyun;Lim, Gye-Hun;Seo, Jung-Wan;Kim, Jeung-Hoon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.4
    • /
    • pp.296-301
    • /
    • 2017
  • In various industrial places such as power generation plants, petrochemical and unit factories, the demands of systems that produce hot water by utilizing wasted or surplus steam have been increased. Compact steam unit(CSU) is a system that can meet these demands and produce hot water by using surplus or wasted steam, and it is also one of the good solutions in view of energy reuse. The new CSU with a capacity of 1,600 kW was developed with a hybrid plate heat exchanger of which thermal performances are better than a conventional plate heat exchanger, an improved temperature control valve, a user-friendly control system, and other components in this study. The purpose of this study was to obtain performance data of the new CSU through various experiments and utilize them for the CSU commercialization. The experimental results show that heat balances between the hot side(steam) and the cold side(cold water) were within ${\pm}0.77%$, and the fluctuations of outlet temperature of the secondary side which are one of the most important evaluation factors in the CSU were $(0{\sim}0.3)^{\circ}C$.

Analysis of Development Trend for the Integrated Power System of Naval Vessels to Perform the High-Power and Energy Mission Load Platform (고출력 에너지 사용 체계 플랫폼 실현을 위한 해군함정의 통합 동력 시스템 발전 경향 분석)

  • Lee, Hyung-Min;Cho, Byung-Jin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.796-801
    • /
    • 2011
  • The objective of this work presented here was focused on analysis of development trend for the integrated power system of naval vessels to perform the high-power and energy mission load platform. These mission loads are affected by the high level of military technologies, digitalization of the ocean battlefield, high power sensor system for maximization of the ship survivability. All electric power including propulsion power for ship should be controlled by integrated single system in order to carry various high power density weapon system such as Electromagnetic Aircraft Launch System, Electromagnetic Rail Gun[feasible precision striking at long distance 200NM(370km) or over]. As the analyzing the present state of things, mechanical propulsion system is shifted into hybrid or fully electric propulsion systems to realize integrated power system at the developed countries. Such challenges include reduced dependency on foreign-supplied fossil fuel, increasing demand for installed ship power, controlling life-cycle costs.

The grid-connected bidirectional PCS technology of the ESS (에너지 저장장치의 계통 연계형 양방향 PCS 기술)

  • Ko, Bong-Woon
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1280-1287
    • /
    • 2019
  • Grid-connected bidirectional PCS(Power Conditioning System) technology is a technology for implementing distributed renewable energy smart grid. And it is always charged by using power collected from solar modules and commercial grid power among vast smart grid systems, and stored when needed.It is a hybrid energy storage device that allows power to be released into the low voltage system. To this end, a PV input power converter with MPPT function, a bidirectional power converter for battery charging and discharging, and a DC Link input are output to a 3 phase 380V AC system, and if nessary, the bidirectional DC/DC converter We designed and developed a PCS with three power converter structures composed of inverters that perform battery charging. Currently, this system is applied to the site of Jeju, which is vulnerable to power outages and fire accidents.

Effect of soil in controlling the seismic response of three-dimensional PBPD high-rise concrete structures

  • Mortezaie, Hamid;Rezaie, Freydoon
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.217-227
    • /
    • 2018
  • In the last decades, valuable results have been reported regarding conventional passive, active, semi-active, and hybrid structural control systems on two-dimensional and a few three-dimensional shear buildings. In this research, using a three-dimensional finite element model of high-rise concrete structures, designed by performance based plastic design method, it was attempted to construct a relatively close to reality model of concrete structures equipped with Tuned Mass Damper (TMD) by considering the effect of soil-structure interaction (SSI), torsion effect, hysteresis behavior and cracking effect of concrete. In contrast to previous studies which have focused mainly on linearly designed structures, in this study, using performance-based plastic design (PBPD) design approach, nonlinear behavior of the structures was considered from the beginning of the design stage. Inelastic time history analysis on a detailed model of twenty-story concrete structure was performed under a far-field ground motion record set. The seismic responses of the structure by considering SSI effect are studied by eight main objective functions that are related to the performance of the structure, containing: lateral displacement, acceleration, inter-story drift, plastic energy dissipation, shear force, number of plastic hinges, local plastic energy and rotation of plastic hinges. The tuning problem of TMD based on tuned mass spectra is set by considering five of the eight previously described functions. Results reveal that the structural damage distribution range is retracted and inter-story drift distribution in height of the structure is more uniform. It is strongly suggested to consider the effect of SSI in structural design and analysis.

A Hierarchical Underwater Acoustic Sensor Network Architecture Utilizing AUVs' Optimal Trajectory Movements (수중 무인기의 최적 궤도 이동을 활용하는 계층적 수중 음향 센서 네트워크 구조)

  • Nguyen, Thi Tham;Yoon, Seokhoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.12
    • /
    • pp.1328-1336
    • /
    • 2012
  • Compared to terrestrial RF communications, underwater acoustic communications have several limitations such as limited bandwidth, high level of fading effects, and a large underwater propagation delay. In this paper, in order to tackle those limitations of underwater communications and to make it possible to form a large underwater monitoring systems, we propose a hierarchical underwater network architecture, which consists of underwater sensors, clusterheads, underwater/surface sink nodes, autonomous underwater vehicles (AUVs). In the proposed architecture, for the maximization of packet delivery ratio and the minimization of underwater sensor's energy consumption, a hybrid routing protocol is used. More specifically, cluster members use Tree based routing to transmit sensing data to clusterheads. AUVs on optimal trajectory movements collect the aggregated data from clusterhead and finally forward the data to the sink node. Also, in order to minimize the maximum travel distance of AUVs, an Integer Linear Programming based algorithm is employed. Performance analysis through simulations shows that the proposed architecture can achieve a higher data delivery ratio and lower energy consumption than existing routing schemes such as gradient based routing and geographical forwarding. Start after striking space key 2 times.

Understanding of Polymer Electrolyte Membrane for a Unitized Regenerative Fuel Cell (URFC) (일체형 재생 연료전지(URFC)용 고분자 전해질 막의 이해)

  • Jung, Ho-Young
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.125-132
    • /
    • 2011
  • A unitized regenerative fuel cell (URFC) as a next-generation fuel cell technology was considered in the study. URFC is a mandatory technology for the completion of the hybrid system with the fuel cell and the renewable energy sources, and it can be expected as a new technology for the realization of hydrogen economy society in the $21^{st}$ century. Specifically, the recent research data and results concerning the polymer electrolyte membrane for the URFC technology were summarized in the study. The prime requirements of polymer electrolyte membrane for the URFC applications are high proton conductivity, dimensional stability, mechanical strength, and interfacial stability with the electrode binder. Based on the performance of the polymer electrolyte membrane, the URFC technology combining the systems for the production, storage, utilization of hydrogen can be a new research area in the development of an advanced technology concerning with renewable energy such as fuel cell, solar cell, and wind power.

Maximum Efficiency Point Tracking Algorithm Using Oxygen Access Ratio Control for Fuel Cell Systems

  • Jang, Min-Ho;Lee, Jae-Moon;Kim, Jong-Hoon;Park, Jong-Hu;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.194-201
    • /
    • 2011
  • The air flow supplied to a fuel cell system is one of the most significant factors in determining fuel efficiency. The conventional method of controlling the air flow is to fix the oxygen supply at an estimated constant rate for optimal efficiency. However, the actual optimal point can deviated from the pre-set value due to temperature, load conditions and so on. In this paper, the maximum efficiency point tracking (MEPT) algorithm is proposed for finding the optimal air supply rate in real time to maximize the net-power generation of fuel cell systems. The fixed step MEPT algorithm has slow dynamics, thus it affects the overall efficiency. As a result, the variable step MEPT algorithm is proposed to compensate for this problem instead of a fixed one. The complete small signal model of a PEM Fuel cell system is developed to perform a stability analysis and to present a design guideline. For a design example, a 1kW PEM fuel cell system with a DSP 56F807 (Motorola Inc) was built and tested using the proposed MEPT algorithm. This control algorithm is very effective for a soft current change load like a grid connected system or a hybrid electric vehicle system with a secondary energy source.

Experimental Study of N2O Plasma Igniter for PMMA Combustion (N2O 플라즈마 점화 하이브리드 로켓에 대한 실험적 연구)

  • Kim, Myoungjin;Kim, Taegyu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.3
    • /
    • pp.1-8
    • /
    • 2019
  • In this study, Arc plasma was employed for the thermal decomposition of nitrous oxide($N_2O$). Conventional ignition systems such as torch, spark, and catalyst systems, have disadvantages in that they are not reliable and do not provide rapid responses. Therefore, this study suggests the plasma application of plasma to overcome the problems of conventional ignition methods. A gas temperature and combustion experiment was carried out to investigate the feasibility to a novel igniter. The gas temperature was measured around $960^{\circ}C$ at 1 g/s, 0.7 A at the nearest wall. In addition, a combustion test was successfully conducted in 3.1 sec after the plasma discharge was initiated with a main flow rate of 10 g/s. The energy consumption for ignition was 1,780 J(574 W).

Seismic retrofit of steel structures with re-centering friction devices using genetic algorithm and artificial neural network

  • Mohamed Noureldin;Masoum M. Gharagoz;Jinkoo Kim
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.167-184
    • /
    • 2023
  • In this study, a new recentering friction device (RFD) to retrofit steel moment frame structures is introduced. The device provides both self-centering and energy dissipation capabilities for the retrofitted structure. A hybrid performance-based seismic design procedure considering multiple limit states is proposed for designing the device and the retrofitted structure. The design of the RFD is achieved by modifying the conventional performance-based seismic design (PBSD) procedure using computational intelligence techniques, namely, genetic algorithm (GA) and artificial neural network (ANN). Numerous nonlinear time-history response analyses (NLTHAs) are conducted on multi-degree of freedom (MDOF) and single-degree of freedom (SDOF) systems to train and validate the ANN to achieve high prediction accuracy. The proposed procedure and the new RFD are assessed using 2D and 3D models globally and locally. Globally, the effectiveness of the proposed device is assessed by conducting NLTHAs to check the maximum inter-story drift ratio (MIDR). Seismic fragilities of the retrofitted models are investigated by constructing fragility curves of the models for different limit states. After that, seismic life cycle cost (LCC) is estimated for the models with and without the retrofit. Locally, the stress concentration at the contact point of the RFD and the existing steel frame is checked being within acceptable limits using finite element modeling (FEM). The RFD showed its effectiveness in minimizing MIDR and eliminating residual drift for low to mid-rise steel frames models tested. GA and ANN proved to be crucial integrated parts in the modified PBSD to achieve the required seismic performance at different limit states with reasonable computational cost. ANN showed a very high prediction accuracy for transformation between MDOF and SDOF systems. Also, the proposed retrofit showed its efficiency in enhancing the seismic fragility and reducing the LCC significantly compared to the un-retrofitted models.