• Title/Summary/Keyword: Hybrid density functional method

Search Result 16, Processing Time 0.021 seconds

mPW1PW91 Calculated Structures and IR Spectra of the Conformational Stereoisomers of C-Cyanophenyl Pyrogallol[4]arene

  • Ahn, Sangdoo;Park, Tae Jung;Choe, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1323-1328
    • /
    • 2014
  • Molecular structures of the various conformational stereoisomers of 2,8,14,20-cyanophenyl pyrogallol[4]arenes 1 were optimized using the mPW1PW91 (hybrid Hartree-Fock density functional) calculation method. The total electronic and Gibbs free energies and the normal vibrational frequencies of the different structures from three major conformations (CHAIR, TABLE, and 1,2-Alternate) of the four stereoisomers [1(rccc), 1(rcct), 1(rctt), and 1(rtct)] were analyzed. The mPW1PW91/6-31G(d,p) calculations suggested that $1(rcct)_{1,2-A}$, 1(rctt)CHAIR, and $1(rtct)_{CHAIR}$ were the more stable conformations of the respective stereoisomers. Hydrogen bonding is the primary factor for the relative stabilities of the various conformational isomers, and maximizing the ${\pi}-{\pi}$ interaction between the cyanophenyl rings is the secondary factor. The calculated IR spectra of the more stable conformers [$1(rctt)_{CHAIR}$, $1(rcct)_{1,2-A}$, $1(rtct)_{CHAIR}$] were compared with the experimental IR spectrum of $1(rtct)_{CHAIR}$.

Substituent Effects on the Gas-Phase Pyrolyses of 2-Substituted Ethyl N,N-Dialkylcarbamates: A Theoretical Study

  • Kim, Chang-Kon;Kim, Dong-Jin;Zhang, Hui;Hsieh, Yih-huang;Lee, Bon-Su;Lee, Hai-Whang;Kim, Chan-Kyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.6
    • /
    • pp.1031-1034
    • /
    • 2007
  • The R- and Z-substituent effects for the gas-phase thermal decompositions of carbamates, R2NC(=O)- OCH2CH2Z, have been investigated theoretically at B3LYP level with 6-31G(d) and 6-31++G(d,p) basis sets. Both the Z- and R-substituent effects on reactivity (ΔH≠) were well consistent with experimental results, although the R-substituent effect was underestimated theoretically. No correlations were found between activation enthalpies and reaction enthalpies. The substituent effects on reactivity seemed to be complicated at a glance, but were understandable by concurrent electronic and steric factors. Variations of bond lengths at TS structures were well correlated with the Taft's σ* values and the TS structures became tighter as the Zsubstituent became a stronger electron-acceptor (δσ* > 0). However the effects of R-substituents on the TS structures were much smaller when compared to those of Z-substituents.

Electron Trapping and Transport in Poly(tetraphenyl)silole Siloxane of Quantum Well Structure

  • Choi, Jin-Kyu;Jang, Seung-Hyun;Kim, Ki-Jeong;Sohn, Hong-Lae;Jeong, Hyun-Dam
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.158-158
    • /
    • 2012
  • A new kind of organic-inorganic hybrid polymer, poly(tetraphenyl)silole siloxane (PSS), was invented and synthesized for realization of its unique charge trap properties. The organic portions consisting of (tetraphenyl)silole rings are responsible for electron trapping owing to their low-lying LUMO, while the Si-O-Si inorganic linkages of high HOMO-LUMO gap provide the intrachain energy barrier for controlling electron transport. Such an alternation of the organic and inorganic moieties in a polymer may give an interesting quantum well electronic structure in a molecule. The PSS thin film was fabricated by spin-coating of the PSS solution in THF organic solvent onto Si-wafer substrates and curing. The electron trapping of the PSS thin films was confirmed by the capacitance-voltage (C-V) measurements performed within the metal-insulator-semiconductor (MIS) device structure. And the quantum well electronic structure of the PSS thin film, which was thought to be the origin of the electron trapping, was investigated by a combination of theoretical and experimental methods: density functional theory (DFT) calculations in Gaussian03 package and spectroscopic techniques such as near edge X-ray absorption fine structure spectroscopy (NEXAFS) and photoemission spectroscopy (PES). The electron trapping properties of the PSS thin film of quantum well structure are closely related to intra- and inter-polymer chain electron transports. Among them, the intra-chain electron transport was theoretically studied using the Atomistix Toolkit (ATK) software based on the non-equilibrium Green's function (NEGF) method in conjunction with the DFT.

  • PDF

Theoretical Studies on the Structure and Aromaticity of 1H-Indene and Mono-sila-1H-Indene (1H-Indene과 Mono-sila-1H-Indene의 구조와 방향족성에 대한 이론적 연구)

  • Ghiasi, Reza;Monnajemi, Majid
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.4
    • /
    • pp.281-290
    • /
    • 2006
  • The electronic structure and properties of the 1H-indene and mono-sila-1H-indene series have been investigated using basis set of 6-31G(d, p) and hybrid density functional theory. Basic measures of aromatic character derived from structure, molecular orbitals, a variety of magnetic criteria (magnetic isotropic and anisotropic susceptibilities) are considered. Energetic criteria suggest that In(Si7) enjoy conspicuous stabilization. However, by magnetic susceptibility isotropic this system are among the least aromatic of the family: Within their isomer series, In(Si4) is the most aromatic using this criteria. Natural bond orbital (NBO) analysis method was performed for the investigation of the relative stability and the nature of the 8-9 bonds in 1H-indene and mono-sila-1H-indene compounds. The results explained that how the p character of natural atomic hybrid orbital on X8 and X9 (central bond) is increased by the substitution of the C8 and C9 by Si. Actually, the results suggested that in these compounds, the X8-X9 bond lengths are closely controlled by the p character of these hybrid orbitals and also by the nature of C-Si bonds. The magnitude of the molecular stabilization energy associated to delocalization from X8-X9 and to * X8-X9 bond orbital were also quantitatively determined. Molecular orbital (MO) analysis further reveal that all structure has three delocalized MOs and two delocalized MOs and therefore exhibit the aromaticity.

Characterization of LLDPE/CaCO3 Composite Drawn Film (연신된 LLDPE/CaCO3 composite film의 특성분석)

  • Lee, Jungeon;Park, Jae Min;Jung, Jae Hoon;Kim, Tae Young;Han, Myung Dong;Seo, Jang Min;Seo, Min Jeong;Yang, Seong Baek;Yeum, Jeong Hyun
    • Textile Coloration and Finishing
    • /
    • v.34 no.1
    • /
    • pp.68-75
    • /
    • 2022
  • The breathable film refers to a high-functional film that allows gas and water vapor to pass through very fine and sophisticated pores but not liquid. In this research, the breathable film was prepared based on linear low-density polyethylene (LLDPE) and CaCO3 particles by extrude method. The LLDPE composite film containing CaCO3 particles had excellent mechanical properties and functionalties. The drawing is a technologically simple and excellent method for improving the mechanical properties of composite films. In this work, the effects of draw ratio on morphology, crystallinity, pore size distribution, mechanical properties, and water vapor permeability of the films were examined. The results revealed that both surface morphology and breathability were affected by the influence of chain orientation and crystal growth with increasing the draw ratio. The mechanical properties were improved with increasing the draw ratio.

Theoretical Studies on the Addition Reactions of Ketene with NH3 in the Gas Phase and in Non-Aqueous Solutions

  • Kim, Chang-Kon;Lee, Kyung A;Chen, Junxian;Lee, Hai-Whang;Lee, Bon-Su;Kim, Chan-Kyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.7
    • /
    • pp.1335-1343
    • /
    • 2008
  • Theoretical studies on the un-catalyzed and catalyzed aminations of ketene with $NH_3$ and $(NH_3)_2$, respectively, were studied using MP2 and hybrid density functional theory of B3LYP at the 6-31+G(d,p) and 6- 311+G(3df,2p) basis sets in the gas phase and in benzene and acetonitrile solvents. In the gas phase reaction, the un-catalyzed mechanism was the same as those previously reported by others. The catalyzed mechanism, however, was more complicated than expected requiring three transition states for the complete description of the C=O addition pathways. In the un-catalyzed amination, rate determining step was the breakdown of enol amide but in the catalyzed reaction, it was changed to the formation of enol amide, which was contradictory to the previous findings. Starting from the gas-phase structures, all structures were re-optimized using the CPCM method in solvent medium. In a high dielectric medium, acetonitrile, a zwitterions formed from the reaction of $CH_2$=C=O with $(NH_3)_2$, I(d), exists as a genuine minimum but other zwitterions, I(m) in acetonitrile and I(d) in benzene become unstable when ZPE corrected energies are used. Structural and energetic changes induced by solvation were considered in detail. Lowering of the activation energy by introducing additional $NH_3$ molecule amounted to ca. −20 $\sim$ −25 kcal/mol, which made catalyzed reaction more facile than un-catalyzed one.