• Title/Summary/Keyword: Hybrid converter

Search Result 320, Processing Time 0.024 seconds

Synthesis and Implementation of a Multi-Port DC/DC Converter for Hybrid Electric Vehicles

  • Santhosh, T. K.;Natarajan, K.;Govindaraju, C.
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1178-1189
    • /
    • 2015
  • A non-isolated Multiple Input Converter (MIC) with an input port, two storage ports and a load port is proposed. The synthesis of the proposed four port converter with its switch realization is presented. A steady state analysis of each operating mode with a small-signal model is derived, and a stability analysis is done. A mode selection controller is proposed to automatically choose a specific operating mode based on the voltage levels of the different source and storage units. In addition, a voltage control loop is used to regulate the output voltage. A 200W prototype is built with a TMS320F28027 DSP controller to test the feasibility of the operating modes. Simulation and experimental results show the ability of the proposed converter to handle multiple inputs either individually or simultaneously.

A Hybrid DC/DC Converter for EV OBCs Using Full-bridge and Resonant Converters with a Single Transformer

  • Hassan, Najam ul;Kim, Yoon-Jae;Han, Byung-Moon;Lee, Jun-Young
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.11-19
    • /
    • 2017
  • This paper proposes a dc/dc converter for electric vehicle onboard chargers using a secondary resonant tank. To attain soft switching characteristics, such as zero voltage switching, magnetizing inductance has been used at the primary side of the transformer. The leakage inductance of the transformer is used as a resonant inductor on the secondary side to avoid the use of a separate inductor as resonance. The proposed converter is applicable for a wide load range. A 6.6KW prototype has been implemented for a wide range of load variations (250V, 330V, 360V, and 413V). A maximum efficiency of 97.4% is achieved at 413V.

Three Phase Inverter System Utilizing Three Bi-directional Buck-Boost Converter (3개의 양방향 벅-부스트 컨버터를 이용한 3상 인버터 시스템)

  • Kim, Sung-Young;Nam, Kwang-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.551-554
    • /
    • 2006
  • An inverter system which consists of three bi-directional buck-boost converters, is proposed for motor driving. Three phase sinusoidal output voltages can be generated by utilizing three buck-boost converters. The advantage of this scheme is that it does not require a separate DC-DC converter for motor driving, i.e. inverter function is combined into the three DC-DC converters. This topology is suitable for inverters for hybrid or fuel cell vehicles where DC link voltage is subject to change depending upon charging status or output power. So the proposed system is capable of driving motor at high speed. The converter system is controlled by PI controller and simulation results done by MATLAB SIMULINK are provided.Ҙ?⨀ሉȀ̀㘰々K䍄乍?ጊ츀Ѐ㔹〻Ԁ䭃䑎䴀

  • PDF

A Bridgeless Single Stage AC-DC Converter for Wireless Power Charging System (무선전력충전시스템을 위한 브리지리스 단일전력단 교류-직류 컨버터)

  • Kim, Min-Ji;Yoo, Sang-Jae;Yoo, Kyung-Jong;Woo, Jung-Won;Kim, Eun-Soo;Hwang, In-Gab
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.1
    • /
    • pp.44-53
    • /
    • 2020
  • A bridgeless single-stage AC-DC converter for wireless power charging systems is proposed. This converter is composed of a PFC stage and a three-level hybrid DC-DC stage. The proposed converter can control the wide output voltage (200-450 VDC) by the variable link voltage and the pulse-width voltage applied to the primary resonant circuit due to the phase-shifted modulation at a fixed switching frequency. Moreover, the input power factor and the total harmonic distortion can be improved by using the proposed converter. A 1 kW prototype was fabricated and validated through experimental results and analysis.

Performance Analysis of Hybrid Type HVDC Circuit Breakers in Voltage Source Converter based HVDC System (전압형 HVDC 시스템 적용을 고려한 Hybrid Type HVDC 차단기의 동작 특성 분석)

  • Khan, Umer Amir;Lee, Jong-Gun;Lim, Sung-Woo;Lee, Ho-Yun;Lee, Bang-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.153-154
    • /
    • 2015
  • Voltage Source Converter HVDC (VSC-HVDC) are a better alternative than conventional thyristor based HVDC systems. Unfortunately, VSC-HVDC's full potential cannot be utilized up till now due to absence of suitable HVDC protection. Recently, hybrid HVDC circuit breakers (HDCCB) have been developed and successfully lab tested. However, their application and feasibility in VSC-HVDC needs to be investigated. In this research paper we have modelled an existing HDCCB and evaluated its impact on fault reduction and interruption in VSC-HVDC systems. The HDCCB was applied in Korean Jeju-Haenam VSC-HVDC system model and its impact was analyzed for HVDC line-to-ground and line-to-line faults. HDCCB successfully interrupted the fault current and prevented the damages to costly IGBTs and converter transformers.

  • PDF

A Variable Voltage Control Method of the High Voltage DC/DC Converter for a Hybrid or Battery Electric Vehicle (친환경 차량용 고전압 DC/DC 컨버터의 가변 전압 제어)

  • Kwon, Tae-Suk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.71-77
    • /
    • 2011
  • An analysis, which is focused on electrical losses of an electrical propulsion system with High voltage DC/DC Converter (HDC) for a hybrid and an electric vehicle, is presented. From the analysis, it can be known that the electrical losses are closely related to the dc link voltage of the HDC, and there is an optimal dc link voltage which minimizes the losses. In this paper, the method to decide the optimal dc link voltage is proposed and the comparison on the losses by the control methods of the dc link voltage, during a driving cycle, is performed and the result is also presented.

4-Channel LED Current Balancing Scheme Using C-Fed Hybrid Quasi-Z-Source Converter (전류형 하이브리드 Quasi-Z-Source 컨버터를 이용한 4-채널 LED 전류 밸런싱 기법)

  • Hong, Daheon;Cha, Honnyong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.1
    • /
    • pp.66-73
    • /
    • 2021
  • This study presents a novel four-channel light-emitting diode (LED) current balancing topology using a current-fed hybrid quasi-Z-source converter. With the proposed structure, currents flowing through four LED strings are automatically balanced owing to the charge (amp-sec) balance condition on capacitors. Thus, automatic current balancing of the proposed driver is simple and precise. In addition, the proposed LED driver uses only one active switch and three diodes. The operating principle and characteristics of the proposed four-channel LED driver are analyzed in detail. To verify the operation of the proposed LED driver, a prototype is built and tested with different numbers of LEDs.

A hybrid maximum power tracker for a photovoltaic/wind hybrid power system (태양광/풍력 복합발전 시스템의 최대출력제어기 설계)

  • 정상식;김시경;정영석;유권종;송진수
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.134-137
    • /
    • 1998
  • In this paper, a hybrid maximum power tracker for a photovoltaic/wind hybrid power system is proposed. In the hybrid system, a direct interfacing the wind power system to the photovoltaic system gives the problems of voltage fluctuations, poor maximum power tracking, and harmonics generation associated with the random wind speed, the random solar irradiation and the pulsating torque came from the wind turbine synchronous generator and photovoltaic. To overcome these problems, a wind side DC/DC converter are proposed employing a star/delta transformer interconnected between the wind turbine side and the photovoltaic side. The control objective for each dc/dc converter is to extract maximum power from each different photovoltaic system and wind system, and transfer two different powers to the inverter and load.

  • PDF

A Novel Single Converter and Single Inverter (1Con-1Inv) Topology and Control Algorithm for Photovoltaic-Fuel Cell Hybrid System (태양광-연료전지 하이브리드 발전을 위한 새로운 단일 컨버터 및 단일 인버터 (1Con-1Inv) 회로 및 제어 알고리즘)

  • Kim, Jong-Soo;Choe, Gyu-Yeong;Lee, Byoung-Kuk;Won, Chung-Yuen;Lee, Tae-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2200-2208
    • /
    • 2009
  • This paper presents a novel single converter and single inverter (1Con-1Inv) topology for photovoltaic (PV)-fuel cell (FC) hybrid system and a new control scheme for the PV-FC hybrid system is then proposed. The new topology and the unique algorithm can minimize volume and production cost of the hybrid system. Moreover, system efficiency can improve due to reduction of losses of hardware components and other control factors are well regulated using just 1Con-1Inv with the help of the proposed control algorithm. The validity of proposed algorithm is verified both computer simulation using PSIM and Matlab/Simulink program and experimental with 700W of PV and 600W of FC system.

Novel Five-Level Three-Phase Hybrid-Clamped Converter with Reduced Components

  • Chen, Bin;Yao, Wenxi;Lu, Zhengyu
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1119-1129
    • /
    • 2014
  • This study proposes a novel five-level three-phase hybrid-clamped converter composed of only six switches and one flying capacitor (FC) per phase. The capacitor-voltage-drift phenomenon of the converter under the classical sinusoidal pulse width modulation (SPWM) strategy is comprehensively analyzed. The average current, which flows into the FC, is a function of power factor and modulation index and does not remain at zero. Thus, a specific modulation strategy based on space vector modulation (SVM) is developed to balance the voltage of DC-link and FCs by injecting a common-mode voltage. This strategy applies the five-segment method to synthesize the voltage vector, such that switching losses are reduced while optional vector sequences are increased. The best vector sequence is then selected on the basis of the minimized cost function to suppress the divergence of the capacitor voltage. This study further proposes a startup method that charges the DC-link and FCs without any additional circuits. Simulation and experimental results verify the validity of the proposed converter, modulation strategy, and precharge method.