• 제목/요약/키워드: Hybrid algorithm

검색결과 1,931건 처리시간 0.026초

큐싱 공격 탐지를 위한 AutoML 머신러닝 기반 악성 URL 분류 기술 연구 및 서비스 구현 (AutoML Machine Learning-Based for Detecting Qshing Attacks Malicious URL Classification Technology Research and Service Implementation)

  • 김동영;황기성
    • 스마트미디어저널
    • /
    • 제13권6호
    • /
    • pp.9-15
    • /
    • 2024
  • 최근 정부 기관을 사칭한 가짜 QR(Quick Response)코드를 이용하여 개인정보와 금융정보를 탈취하는 QR코드와 스미싱을 결합한 '큐싱(Qshing)' 공격이 증가하는 추세이다. 특히, 이 공격 방식은 사용자가 단지 QR코드를 인식하는 것만으로 스미싱 페이지에 연결되거나 악성 소프트웨어를 다운로드하게 만들어 피해자가 자신이 공격당했는지조차 인지하기 어려운 특징이 있다. 본 논문에서는 머신러닝 알고리즘을 활용해 QR 코드 내 URL의 악성도를 파악하는 분류 기술을 개발하고, 기존의 QR 코드 리더기와 결합하는 방식에 관해 연구를 진행하였다. 이를 위해 QR코드 내 악성 URL 128,587개, 정상 URL 428,102개로부터 프로토콜, 파라미터 등 각종 특징 35개를 추출하여 데이터셋을 구축한 후, AutoML을 이용하여 최적의 알고리즘과 하이퍼파라미터를 도출한 결과, 약 87.37%의 정확도를 보였다. 이후 기존 QR코드 리더기와 학습한 분류 모델의 결합을 설계하여 큐싱 공격에 대응할 수 있는 서비스를 구현하였다. 결론적으로, QR코드 내 악성 URL 분류 모델에 최적화된 알고리즘을 도출하고, 기존 QR코드 리더기에 결합하는 방식이 큐싱 공격의 대응 방안 중 하나임을 확인하였다.

종합 평점과 다기준 평점을 선택적으로 활용하는 협업필터링 기반 하이브리드 추천 시스템 (A Hybrid Recommender System based on Collaborative Filtering with Selective Use of Overall and Multicriteria Ratings)

  • 구민정;안현철
    • 지능정보연구
    • /
    • 제24권2호
    • /
    • pp.85-109
    • /
    • 2018
  • 추천시스템은 사용자의 과거 구매행동을 통해 향후 구매할 것이라고 예상되는 제품을 자동으로 검색하여 추천해준다. 특히 전자상거래 기업의 상품추천시스템은 일대일 마케팅의 대표적 실현수단으로 가치가 있다. 하지만, 전통적인 추천시스템, 특히 학계 및 산업계에서 가장 널리 사용되고 있는 전통적인 협업필터링 기법은 단일차원의 '종합 평점'만을 고려하여 추천결과를 생성하도록 설계되어 있어, 사용자들의 정확한 니즈를 이해하고 대응하는데 근본적인 한계가 있다. 최근에는 전자 상거래 기업들도 고객들로부터 보다 다각화된, 다기준 방식으로 피드백을 받고 있다. 특히 다기준 평점은 정량적으로 입력되는 정보이므로 상대적으로 분석 및 처리가 용이하다는 장점이 있다. 그러나 다기준 평점 역시 사전에 정해진 기준에 대해서만 사용자의 피드백이 이루어지기 때문에, 보다 상세하게 사용자의 의견을 이해하여 추천에 반영하는 데에는 한계가 있다. 이에 본 연구는 다기준 평점 정보와 선택적 협업필터링의 서로 다른 접근방법을 통해 도출된 추천결과를 종합하여, 최종적으로 추천 대상리스트를 산출할 수 있는 하이브리드 기술을 제안한다. 본 연구에서 제안한 연구모형의 유용성을 검증하기 위해, 식음료점(식당, 카페 등)에 대한 실제 이용자를 대상으로 온라인 설문을 통해 종합 평점과 다기준 평점을 수집하였으며, 데이터를 학습용과 검증용으로 구분하여 학습시키고 성과를 평가하였다. 이 기법은 결합 함수 기반 접근법과 사용자마다 구매의사결정의 체계가 다르다는 전제하에, 사용자들을 유형화하고, 유형에 따라 정보원을 선택적으로 활용하는 협업필터링 알고리즘을 활용했다. 실험결과, 제안 알고리즘을 통한 추천 방법이 단일 차원을 고려하는 전통적인 협업필터링과 비교해 더 우수한 예측정확도를 나타냄을 확인했다. 아울러, 본 연구가 제안하는 다기준 평점과 선택적 협업필터링 알고리즘을 종합하여 추천하는 방법이, 단순히 다기준 평점을 고려했을 때 보다 통계적으로 유의한 수준의 정확도의 개선이 이루어짐을 확인할 수 있었다.

사용자 간 신뢰관계 네트워크 분석을 활용한 협업 필터링 알고리즘의 예측 정확도 개선 (Enhancing Predictive Accuracy of Collaborative Filtering Algorithms using the Network Analysis of Trust Relationship among Users)

  • 최슬비;곽기영;안현철
    • 지능정보연구
    • /
    • 제22권3호
    • /
    • pp.113-127
    • /
    • 2016
  • 협업 필터링(Collaborative Filtering)은 유용성과 정교성 면에서 가장 성공적인 추천 알고리즘으로 평가받으며 산업계나 학계에서 많이 활용 및 연구되고 있지만, 기본적으로 사용자들이 평가한 점수에만 기반하여 추천결과를 생성하는 한계점이 있다. 이에 본 연구는 사용자가 상품을 구매할 때 자신이 신뢰하는 타인의 추천을 더 적극적으로 수용할 것이라는 점에 착안하여, 사용자의 평점 외에 사용자 간 신뢰관계를 소셜네트워크분석으로 분석한 결과를 추가로 반영하는 추천 알고리즘들을 제안하였다. 구체적으로 본 연구에서는 소셜네트워크분석에서 네트워크 내의 중심적 위치를 나타내는 척도인 내향 및 외향 중심성을 활용하여 사용자 간 유사도를 산출하는 알고리즘들과 사용자 신뢰 네트워크를 탐색하여 추천 대상이 되는 사용자가 직접 간접적으로 신뢰하는 사용자의 평가점수를 보다 높게 반영하는 알고리즘을 제안한 뒤 그 성능을 비교해 보았다. 실제 데이터에 적용하여 분석한 결과, 사용자 신뢰 네트워크의 내향 중심성 지수를 조건 없이 적용한 경우에는 오히려 정확도의 감소만을 야기하는 것으로 나타났고, 일정 임계치 이상의 외향 중심성을 갖는 사용자에 한해 내향 중심성 지수를 고려한 추천 알고리즘은 전통적인 협업 필터링에 비해 약간의 정확도 개선이 이루어짐을 확인할 수 있었다. 아울러, 사용자 신뢰 네트워크를 기반으로 탐색하는 알고리즘이 가장 우수한 성능을 보이는 것을 알 수 있었으며, 전통적인 협업 필터링과 비교해서도 통계적으로 유의한 수준의 정확도의 개선이 이루어짐을 확인할 수 있었다.

중장년층 일자리 요구사항 분석 및 인력 고용 매칭 시스템 개발 (Job Preference Analysis and Job Matching System Development for the Middle Aged Class)

  • 김성찬;장진철;김성중;진효진;이문용
    • 지능정보연구
    • /
    • 제22권4호
    • /
    • pp.247-264
    • /
    • 2016
  • 저출산 및 인구 고령화가 가속화되면서, 중장년 퇴직자 등 노동 소외 계층의 취업난 해결은 우리 사회의 핵심 과제로 등장하고 있다. 온라인에는 수많은 일자리 요구 정보가 산재해 있으나, 이를 중장년 구직자에게 제대로 매칭시키지는 못하고 있다. 워크넷 취업 로그에 따르면 구직자가 선호하는 직종에 취업하는 경우는 약 24%에 불과하다. 그러므로, 이러한 문제를 극복하기 위해서는 구직자에게 일자리 정보를 매칭시킬 때 선호하는 직종과 유사한 직종들을 추천하는 소프트 매칭 기법이 필수적이다. 본 연구는 중장년층에 특화된 소프트 직업 매칭 알고리즘과 서비스를 고안하고 개발하여 제공하는 것을 목표로 한다. 이를 위하여 본 연구에서는 1) 대용량의 구직 활동 기록인 워크넷 로그로부터 중장년층의 일자리 특성 및 요구 추세를 분석하였다. 2) 중장년층의 일자리 추천을 위해 직종 유사도 기준으로 일자리 분류표(KOCM)를 재정렬하였다. 이 결과를 이용하여, 3) 중장년에 특화된 인력 고용 소프트 매칭 직업 추천 알고리즘(MOMA)을 개발하여 구인 구직 웹사이트에 적용하였다. 자체 저작한 중장년층 특화 일자리 분류표(KOCM)를 이용한 소프트 일자리 매칭 시스템의 정확도를 측정하였을 때, 실제 고용 결과 기준, 하드 매칭 대비 약 20여 배의 성능 향상을 보였다. 본 연구내용을 적용하여 개발한 중장년층 특화 구직 사이트는 중장년층의 구직 과정에서 입력 정보 부담을 최소화하고 소프트 매칭을 통해 사용자의 요구직종에 적합한 일자리를 정확하고 폭넓게 추천함으로 중장년층의 삶의 질 향상에 기여할 수 있을 것으로 기대된다.

재무예측을 위한 Support Vector Machine의 최적화 (Optimization of Support Vector Machines for Financial Forecasting)

  • 김경재;안현철
    • 지능정보연구
    • /
    • 제17권4호
    • /
    • pp.241-254
    • /
    • 2011
  • Support vector machines(SVM)은 비교적 최근에 등장한 데이터마이닝 기법이지만, 재무, CRM 등의 경영학 분야에서 많이 연구되고 있다. SVM은 인공신경망과 필적할 만큼의 예측 정확도를 보이는 사례가 많았지만, 암상자로 불리는 인공신경망 모형에 비해 구축된 예측모형의 구조를 이해하기 쉽고, 인공신경망에 비해 과도적합의 가능성이 적어서 적은 수의 데이터에서도 적용 가능하다는 장점을 가지고 있다. 하지만, 일반적인 SVM을 이용하려면, 인공신경망과 마찬가지로 여러 가지 설계요소들을 설계자가 선택하여야 하기 때문에 임의성이 높고, 국부 최적해에 수렴할 가능성도 크다. 또한, 많은 수의 데이터가 존재하는 경우에는 데이터를 분석하고 이용하는데 시간이 소요되고, 종종 잡음이 심한 데이터가 포함된 경우에는 기대하는 수준의 예측성과를 얻지 못할 가능성이 있다. 본 연구에서는 일반적인 SVM의 장점을 그대로 유지하면서, 전술한 두 가지 단점을 보완한 새로운 SVM 모형을 제안한다. 본 연구에서 제안하는 모형은 사례선택기법을 일반적인 SVM에 융합한 것으로 대용량의 데이터에서 예측에 불필요한 데이터를 선별적으로 제거하여 예측의 정확도와 속도를 제고할 수 있는 방법이다. 본 연구에서는 잡음이 많고 예측이 어려운 것으로 알려진 재무 데이터를 활용하여 제안 모형의 유용성을 확인하였다.

추천 시스템의 성능 안정성을 위한 예측적 군집화 기반 협업 필터링 기법 (Predictive Clustering-based Collaborative Filtering Technique for Performance-Stability of Recommendation System)

  • 이오준;유은순
    • 지능정보연구
    • /
    • 제21권1호
    • /
    • pp.119-142
    • /
    • 2015
  • 사용자의 취향과 선호도를 고려하여 정보를 제공하는 추천 시스템의 중요성이 높아졌다. 이를 위해 다양한 기법들이 제안되었는데, 비교적 도메인의 제약이 적은 협업 필터링이 널리 사용되고 있다. 협업 필터링의 한 종류인 모델 기반 협업 필터링은 기계학습이나 데이터 마이닝 모델을 협업 필터링에 접목한 방법이다. 이는 희박성 문제와 확장성 문제 등의 협업 필터링의 근본적인 한계를 개선하지만, 모델 생성 비용이 높고 성능/확장성 트레이드오프가 발생한다는 한계점을 갖는다. 성능/확장성 트레이드오프는 희박성 문제의 일종인 적용범위 감소 문제를 발생시킨다. 또한, 높은 모델 생성 비용은 도메인 환경 변화의 누적으로 인한 성능 불안정의 원인이 된다. 본 연구에서는 이 문제를 해결하기 위해, 군집화 기반 협업 필터링에 마르코프 전이확률모델과 퍼지 군집화의 개념을 접목하여, 적용범위 감소 문제와 성능 불안정성 문제를 해결한 예측적 군집화 기반 협업 필터링 기법을 제안한다. 이 기법은 첫째, 사용자 기호(Preference)의 변화를 추적하여 정적인 모델과 동적인 사용자간의 괴리 해소를 통해 성능 불안정 문제를 개선한다. 둘째, 전이확률과 군집 소속 확률에 기반한 적용범위 확장으로 적용범위 감소 문제를 개선한다. 제안하는 기법의 검증은 각각 성능 불안정성 문제와 확장성/성능 트레이드오프 문제에 대한 강건성(robustness)시험을 통해 이뤄졌다. 제안하는 기법은 기존 기법들에 비해 성능의 향상 폭은 미미하다. 또한 데이터의 변동 정도를 나타내는 지표인 표준 편차의 측면에서도 의미 있는 개선을 보이지 못하였다. 하지만, 성능의 변동 폭을 나타내는 범위의 측면에서는 기존 기법들에 비해 개선을 보였다. 첫 번째 실험에서는 모델 생성 전후의 성능 변동폭에서 51.31%의 개선을, 두 번째 실험에서는 군집 수 변화에 따른 성능 변동폭에서 36.05%의 개선을 보였다. 이는 제안하는 기법이 성능의 향상을 보여주지는 못하지만, 성능 안정성의 측면에서는 기존의 기법들을 개선하고 있음을 의미한다.

카메라 보정 오류에 강건한 깊이맵 업샘플링 기술 (A Robust Depth Map Upsampling Against Camera Calibration Errors)

  • 김재광;이재호;김창익
    • 대한전자공학회논문지SP
    • /
    • 제48권6호
    • /
    • pp.8-17
    • /
    • 2011
  • 최근 비행시간 (Time-of-Flight, TOF) 원리에 기반한 깊이 카메라의 등장과 함께 저해상도 깊이 카메라와 고해상도 컬러 카메라로 이루어진 복합형 카메라 시스템 (Fusion Camera System) 이 각광을 받고 있다. 복합형 카메라 시스템에서 취득한 저해상도 깊이맵을 컬러 영상과 같은 영상 평면 (Image Plane) 에 위치시키고 같은 해상도를 가질 수 있게 하려면 카메라 보정 및 3차원 투영, 홀 (Hole) 채우기와 같은 일련의 전처리 과정이 필요하다. 그러나 전처리 과정을 거친 깊이맵은 깊이 카메라의 내부 특성, 카메라 보정의 부정확성 등에 의해 많은 오차를 가진다. 그러므로 본 논문에서는 오차가 많은 상황에서도 강건하게 동작하는 깊이맵 업샘플링 방법을 제안한다. 먼저, 전처리 과정을 통해 얻은 깊이 정보의 신뢰도를 컬러 영상과의 상관관계에 기반하여 측정한다. 그리고 낮은 신뢰도의 깊이 정보를 참조하지 않는 수정된 커널 회기법 (Kernel Regression)을 통해 깊이맵과 컬러 영상의 경계 정합을 수행하여 세밀한 깊이 표현이 가능한 고해상도 깊이맵을 형성한다. 제안하는 알고리즘은 깊이 정보의 신뢰도 정의와 그에 따른 참조를 통해 카메라 보정 결과가 부정확하더라도 높은 성능의 깊이맵 생성을 보장한다. 실험결과를 통해 기존의 깊이맵 업샘플링 기술보다 제안하는 방법이 더 정확한 깊이 정보를 제공하는 것을 확인할 수 있다.

CPFS 내에서 일어나는 동적 열전도 현상을 해석하기 위한 수식 및 혼합알고리즘 개발 (Development of the model and the hybrid algorithm toy analyzing the dynamic heat conduction in the CPES system)

  • 윤종필;권성필;윤인섭
    • 한국가스학회:학술대회논문집
    • /
    • 한국가스학회 2003년도 추계학술발표회 논문집
    • /
    • pp.120-125
    • /
    • 2003
  • 본 연구는 원자력 발전소에 있는 방화벽의 케이블 관통부위에 설치된 CPFS(Cable Penetration Fire Stop)시스템 안에서 일어나는 동적열전달 현상을 3 차원으로 나타낼 수 있는 시험시뮬레이터에 사용될 수학적 모델과 수치계산 알고리즘의 개발에 관한 것이다. CPFS 내에서 일어나는 열전도 현상을 나타내는 지배방정식은 주어진 조건들 하에서 포물선형 편미분방정식(Parabolic PDE)으로 나타난다. 문제를 단순화하기 위해 열의 흐름을 두 성분으로 나누었다 즉, 케이블과 평행한 선을 따라서 일어나는 열전도와 벽면과 평행한 평면 위에서 일어나는 열전도로 나누었다. 먼저 선을 따라 일어나는 동적 열전도 현상을 나타내는 PDE를 연속과완화(SOR: Successive Over-Relaxation)를 적용하여 유한한 불연속점들에 대한 연립 상미분방정식(ODE)으로 전환했고, 그 연립방정식은 ODE Solver 를 이용하여 풀 수 있었다. 둘째로, 각 불연속 점에 위치한 평면 위에서 일어나는 열전도를 계산하기 위해서, 유한요소의 합을 근사식으로 이용하여 PDE를 ODE로 전환해서 계산하는 유한요소법(Finite Element Method)이 이용된다. 여기서 시간과 공간의 함수 T(x, y, z, t)인 온도는 각 선의 점들과 각 평면의 요소들에 대해서 일정한 시간간격으로 초기온도와 경계온도를 업데이트하여 계산을 반복한다. 이러한 일련의 계산결과를 바탕으로 CPFS 시스템 내에서의 온도분포의 동적인 변화를 해석한다. 결론적으로 관통하는 케이블이 CPFS 시스템의 온도분포에 매우 중요한 역할을 한다는 것을 알 수 있다. 시뮬레이션 결과는 CPFS 내의 온도분포를 쉽게 이해할 수 있도록 3 차원 그래픽으로 나타냈으며, 상용소프트웨어 FEMLAB 으로 계산한 결과와 비교해서 개발된 모델과 계산 알고리즘의 정당성을 보였다. 맞이하고 있음을 볼 수 있다. 국내광업이 21C 급변하는 산업환경에 적응하여 생존하기 위해서는 각종 첨단산업에서 요구하는 소량 다품종의 원료광물을 적기에 공급 할 수 있는 전문화된 기술력을 하루속히 확보해야 하며, 이를 위해 고품위의 원료광물 확보를 위한 탐사 및 개발을 적극 추진하고 가공기술의 선진화를 위해 선진국과의 기술제휴 등 자원산업 글로벌화 정책이 절실히 요구되고 있음을 알 수 있다. 또한 삶의 질을 향상시키려는 현대인의 가치관에 부합하기 위해서는 각종 소비제품의 원료를 제공하는 광업의 본래 목적 이외에도 자연환경 훼손을 최소화하며 개발 할 수밖에 없는 구조적인 어려움에 직면할 수밖에 없다. 이처럼 국내광업이 안고 있는 여러 가지 난제들을 극복하기 위해서는 업계와 정부가 합심하여 국내광업 육성의 중요성을 재인식하고 새로운 마음가짐으로 관련 정책을 수립 일관성 있게 추진해 나가야 할 것으로 보인다.의 연구 결과를 요약하면 다음과 같다. 첫째, 브랜드 이미지와 서비스 품질과의 관계에서 브랜드이미지는 서비스 품질의 선행변수가 될 수 있음을 증명하였으며 4개 요인의 이미지 중 사풍이미지를 제외한 영업 이미지, 제품 이미지, 마케팅 이미지가 서비스 품질에 영향을 미치고 있음을 알 수 있다. 둘째, 지각된 서비스 품질과 가격 수용성과의 관계에서, 서비스 품질은 최소 가격에 신뢰서비스 요인에서 정의 영향을 미치고 있으나 부가서비스, 환경서비스에서는 역의 영향을 미침을 알수 있고, 최대 가격에 있어서는 욕구서비스 요인은 정의 영향을 미치지만 부가서비스의 경우에는 역의 영향을 미치고 있음을 알 수 있다. 셋째, 서비스품질과 재 방문 의도와의 관계에 있어서 서비스품질은 재 방문 의도에 영향을 미침을 알 수 있다. 따라서 브랜드 이미지는 서비스품질의 선행변수가 될 수 있으며, 서비스품질은 가격 수용성과 재방문 의도에 영향을 미치고 있음을 알 수

  • PDF

RDA 자원유형 디스플레이를 위한 고려사항에 관한 연구 (A Study on the Display Considerations of RDA Resource Type)

  • 이미화
    • 정보관리학회지
    • /
    • 제33권1호
    • /
    • pp.33-52
    • /
    • 2016
  • 본 연구는 GMD를 대체하는 RDA 자원유형인 내용유형, 매체유형, 수록매체유형의 디스플레이를 위한 고려사항을 모색하고자 한다. 연구방법으로는 문헌연구, 사례조사, 설문조사를 이용하였다. RDA 자원유형의 디스플레이 방안으로 첫째, RDA 자원유형을 디스플레이하기 위해 내용유형과 수록매체유형을 결합하는 것을 제안하였다. 둘째, RDA 내용유형과 수록매체유형을 아이콘화하는 알고리즘으로 내용유형을 나타내는 이미지와 수록매체유형 용어를 결합하는 방안과 내용유형과 수록매체유형을 모두 이미지로 표현하고 각 이미지에 해당하는 용어를 포함시키는 방안을 제안하였다. 셋째, 복합자원의 자원유형 디스플레이를 위해 필드링크와 순서를 나타내는 서브필드를 활용하여 내용유형, 수록매체유형이 세트로 유지될 수 있도록 제안하였다. 넷째, 간략화면에서 자원유형을 나타내는 아이콘은 자원이 디스플레이되는 왼쪽 상단에 두고, 상세화면에서는 자원유형을 기술사항 내에 배치하는 것을 제안하였다. 다섯째, 표출어로 '포맷'이라는 표현을 사용할 것을 제안하였다. 본 연구는 RDA 자원유형의 디스플레이를 계획할 때 고려사항을 제시하였으므로 도서관에서 실질적인 RDA 디스플레이 방안 마련에 활용할 수 있을 것이다.

Computational estimation of the earthquake response for fibre reinforced concrete rectangular columns

  • Liu, Chanjuan;Wu, Xinling;Wakil, Karzan;Jermsittiparsert, Kittisak;Ho, Lanh Si;Alabduljabbar, Hisham;Alaskar, Abdulaziz;Alrshoudi, Fahed;Alyousef, Rayed;Mohamed, Abdeliazim Mustafa
    • Steel and Composite Structures
    • /
    • 제34권5호
    • /
    • pp.743-767
    • /
    • 2020
  • Due to the impressive flexural performance, enhanced compressive strength and more constrained crack propagation, Fibre-reinforced concrete (FRC) have been widely employed in the construction application. Majority of experimental studies have focused on the seismic behavior of FRC columns. Based on the valid experimental data obtained from the previous studies, the current study has evaluated the seismic response and compressive strength of FRC rectangular columns while following hybrid metaheuristic techniques. Due to the non-linearity of seismic data, Adaptive neuro-fuzzy inference system (ANFIS) has been incorporated with metaheuristic algorithms. 317 different datasets from FRC column tests has been applied as one database in order to determine the most influential factor on the ultimate strengths of FRC rectangular columns subjected to the simulated seismic loading. ANFIS has been used with the incorporation of Particle Swarm Optimization (PSO) and Genetic algorithm (GA). For the analysis of the attained results, Extreme learning machine (ELM) as an authentic prediction method has been concurrently used. The variable selection procedure is to choose the most dominant parameters affecting the ultimate strengths of FRC rectangular columns subjected to simulated seismic loading. Accordingly, the results have shown that ANFIS-PSO has successfully predicted the seismic lateral load with R2 = 0.857 and 0.902 for the test and train phase, respectively, nominated as the lateral load prediction estimator. On the other hand, in case of compressive strength prediction, ELM is to predict the compressive strength with R2 = 0.657 and 0.862 for test and train phase, respectively. The results have shown that the seismic lateral force trend is more predictable than the compressive strength of FRC rectangular columns, in which the best results belong to the lateral force prediction. Compressive strength prediction has illustrated a significant deviation above 40 Mpa which could be related to the considerable non-linearity and possible empirical shortcomings. Finally, employing ANFIS-GA and ANFIS-PSO techniques to evaluate the seismic response of FRC are a promising reliable approach to be replaced for high cost and time-consuming experimental tests.