• Title/Summary/Keyword: Hybrid Systems Modeling and Simulation

Search Result 66, Processing Time 0.021 seconds

Control and Operation of Hybrid Microsource System Using Advanced Fuzzy- Robust Controller

  • Hong, Won-Pyo;Ko, Hee-Sang
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.7
    • /
    • pp.29-40
    • /
    • 2009
  • This paper proposes a modeling and controller design approach for a hybrid wind power generation system that considers a fixed wind-turbine and a dump load. Since operating conditions are kept changing, it is challenge to design a control for reliable operation of the overall system To consider variable operating conditions, Takagi-Sugeno (TS) fuzzy model is taken into account to represent time-varying system by expressing the local dynamics of a nonlinear system through sub-systems, partitioned by linguistic rules. Also, each fuzzy model has uncertainty. Thus, in this paper, a modem nonlinear control design technique, the sliding mode nonlinear control design, is utilized for robust control mechanism In the simulation study, the proposed controller is compared with a proportional-integral (PI) controller. Simulation results show that the proposed controller is more effective against disturbances caused by wind speed and load variation than the PI controller, and thus it contributes to a better quality wind-hybrid power generation system.

A Development of Hybrid Production System Modeling using Simulation (시뮬레이션을 활용한 Hybrid 생산 Model의 연구)

  • Noh, Gwon-Hak;Son, Seong-Gyu;Chang, Sung-Ho;Lee, Jong-Hwan;Jeong, Gwan-Young;Kim, Tae-Sung;Lee, Hee-Soo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.2
    • /
    • pp.76-84
    • /
    • 2011
  • To meet the needs of customer, manufacturing companies are diversifying product making methods. In order to adapt to changes, companies are trying to find a new manufacturing system. In this research, MTS (Make to Stock) and MTO (Make to Order) production methods are simulated using ARENA and the results are compared and analyzed to find a better system. As a result, by combining the advantages of MTS and MTO system, a hybrid production system is developed. The hybrid model is analyzed to verify that it is better than the existing two models, which is MTS and MTO model. The statistic results of output analyzer show that a new system helped to increase production rate and decrease work in process inventory. The hybrid model proved that it contains the merits of MTO production method and MTS production method.

A Dynamical Hybrid CAC Scheme and Its Performance Analysis for Mobile Cellular Network with Multi-Service

  • Li, Jiping;Wu, Shixun;Liu, Shouyin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.6
    • /
    • pp.1522-1545
    • /
    • 2012
  • Call admission control (CAC) plays an important role in mobile cellular network to guarantee the quality of service (QoS). In this paper, a dynamic hybrid CAC scheme with integrated cutoff priority and handoff queue for mobile cellular network is proposed and some performance metrics are derived. The unique characteristic of the proposed CAC scheme is that it can support any number of service types and that the cutoff thresholds for handoff calls are dynamically adjusted according to the number of service types and service priority index. Moreover, timeouts of handoff calls in queues are also considered in our scheme. By modeling the proposed CAC scheme with a one-dimensional Markov chain (1DMC), some performance metrics are derived, which include new call blocking probability ($P_{nb}$), forced termination probability (PF), average queue length, average waiting time in queue, offered traffic utilization, wireless channel utilization and system performance which is defined as the ratio of channel utilization to Grade of Service (GoS) cost function. In order to validate the correctness of the derived analytical performance metrics, simulation is performed. It is shown that simulation results match closely with the derived analytic results in terms of $P_{nb}$ and PF. And then, to show the advantage of 1DMC modeling for the performance analysis of our proposed CAC scheme, the computing complexity of multi-dimensional Markov chain (MDMC) modeling in performance analysis is analyzed in detail. It is indicated that state-space cardinality, which reflects the computing complexity of MDMC, increases exponentially with the number of service types and total channels in a cell. However, the state-space cardinality of our 1DMC model for performance analysis is unrelated to the number of service types and is determined by total number of channels and queue capacity of the highest priority service in a cell. At last, the performance comparison between our CAC scheme and Mahmoud ASH's scheme is carried out. The results show that our CAC scheme performs well to some extend.

A Modelling and Control Method for a Hybrid ROV/AUV for Underwater Exploration

  • Nak Yong, Ko;Jiyoun, Moon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.1
    • /
    • pp.67-73
    • /
    • 2023
  • As interest in underwater structures and ocean exploration increases, many researchers are proposing methods for modeling and controlling various remotely operated vehicles (ROVs). Recently, hybrid systems composed of an autonomous underwater vehicle and an ROV capable of remote control and autonomous navigation are being developed. In this study we introduce a method that models Ariari-aROV, an ROV consisting of five thrusters, and performs navigation. The proposed ROV can be controlled manually and by autonomous navigation when given a target point. An extended Kalman filter is utilized for sensor measurement correction for more precise navigation. The proposed method is verified through a simulation.

Transient Performance of a Hybrid Electric Vehicle with Multiple Input DC-DC Converter

  • Nashed, Maged N.F.
    • Journal of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.230-238
    • /
    • 2003
  • Electric vehicles (EV) demands for greater acceleration, performance and vehicle range in pure electric vehicles plus mandated requirements to further reduce emissions in hybrid electric vehicles (HEV) increase the appeal for combined on-board energy storage systems and generators. And the power electronics plays an important role in providing an interface between fuel cells (FC) and loads. This paper deals with a multiple input DC-DC power converter devoted to combine the power flowing of multi-source on energy systems. The multi-source is composed of (i) FC system as a prime power demands, (ii) super capacitor banks as energy storage devices for high and intense power demands, (iii) superconducting magnetic energy storage system (SMES), (iv) multiple input DC-DC power converter and (v) a three phase inverter-fed permanent magnet synchronous motor as a drive. In this system, It is used super capacitor banks and superconducting magnetic energy replaces from the battery system. The modeling and transient performance simulation is effective for reducing transient influence caused by sudden charge of effective load. The main purpose of power electronic converters is to convert the DC power output from the fuel cell and other to a suitable AC voltage, which can be connected to electric loads directly (PMSM). The fuel cell and other output is connected to the DC-DC converter, which regulates the DC link voltage.

Fuzzy Sliding Mode Control for Cornering Performance Improvement of 4WD HEV (퍼지 슬라이딩 모드를 이용한 4WD 하이브리드 차량의 선회성능 향상)

  • Cheong, Jeong-Yun;Ryu, Sung-Min;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.8
    • /
    • pp.735-743
    • /
    • 2010
  • A new Fuzzy sliding mode controller is proposed to improve the cornering performance of the four wheel hybrid vehicles. The Fuzzy sliding mode control is applied for the control of rear motor and EHB (Electro-Hydraulic Brake) to improve the cornering performance. The modeling of the automobile is simplified that each of the two wheels is modeled as two degrees of freedom object and the friction coefficient between the wheel and the ground is assumed to be constant. The output of the Fuzzy sliding mode algorithm is the direct yaw moment for the rear wheels, which compensates for the slip angle. Through the simulations using ADAMS and MATLAB Simulink, the cornering performance of the proposed algorithm is compared to the conventional PID to show the superiority of the proposed algorithm. In the simulation experiments, the J-Turn and single lane change are used for each of the Fuzzy sliding mode algorithm and PID controller with the optimal gains which are tuned empirically.

SLIDERS FOR THE NEXT GENERATION MAGNETIC HARD DISK DRIVE SYSTEMS-NUMERICAL SIMULATION

  • Jhon, Myung-S.;Peck, Paul-R.;Kang, Soo-Choon;Wang, Benjamin-L.;Kim, In-Eung;Park, Ki-Ook
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.695-701
    • /
    • 1995
  • Fundamental issues and general procedures of modeling the head disk interface (HDI) in order to provide design criteria for future ultra-low flying sliders are given. Intermittent contact and gaseous rarefaction effects are discussed using nonconventional kinetic theory. To illustrate the simulation results, we modeled IBM 3370 taper flat sliders and positive/negative "bow tie" sliders. Several alternative HDI concepts for future disk drives - viscoelastic bearings, a hybrid system, and contact recording - are also briefly discussed.

  • PDF

Numerical modeling and global performance analysis of a 15-MW Semisubmersible Floating Offshore Wind Turbine (FOWT)

  • Da Li;Ikjae Lee;Cong Yi;Wei Gao;Chunhui Song;Shenglei Fu;Moohyun Kim;Alex Ran;Tuanjie Liu
    • Ocean Systems Engineering
    • /
    • v.13 no.3
    • /
    • pp.287-312
    • /
    • 2023
  • The global performance of a 15 MW floating offshore wind turbine, a newly designed semisubmersible floating foundation with multiple heave plates by CNOOC, is investigated with two independent turbine-floater-mooring coupled dynamic analysis programs CHARM3D-FAST and OrcaFlex. The semisubmersible platform hosts IEA 15 MW reference wind turbine modulated for VolturnUS-S and hybrid type (chain-wire-chain with clumps) 3×2 mooring lines targeting the water depth of 100 m. The numerical free-decay simulation results are compared with physical experiments with 1:64 scaled model in 3D wave basin, from which appropriate drag coefficients for heave plates were estimated. The tuned numerical simulation tools were then used for the feasibility and global performance analysis of the FOWT considering the 50-yr-storm condition and maximum operational condition. The effect of tower flexibility was investigated by comparing tower-base fore-aft bending moment and nacelle translational accelerations. It is found that the tower-base bending moment and nacelle accelerations can be appreciably increased due to the tower flexibility.

Optimal Tuning of Nonlinear Parameters of a Dual-Input Power System Stabilizer Based on Analysis of Trajectory Sensitivities (궤도민감도 분석에 기반하여 복입력 전력시스템 안정화 장치(Dual-Input PSS)의 비선형 파라미터 최적화 기법)

  • Baek, Seung-Mook;Park, Jung-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.915-923
    • /
    • 2008
  • This paper focuses on optimal tuning of nonlinear parameters of a dual-input power system stabilizer(dual-input PSS), which can improve the system damping performance immediately following a large disturbance. Until recently, various PSS models have developed to bring stability and reliability to power systems, and some of these models are used in industry applications. However, due to non-smooth nonlinearities from the interaction between linear parameters(gains and time constants of linear controllers) and nonlinear parameters(saturation output limits), the output limit parameters cannot be determined by the conventional tuning methods based on linear analysis. Only ad hoc tuning procedures('trial and error' approach) have been used. Therefore, the steepest descent method is applied to implement the optimal tuning of the nonlinear parameters of the dual-input PSS. The gradient required in this optimization technique can be computed from trajectory sensitivities in hybrid system modeling with the differential-algebraic-impulsive-switched(DAIS) structure. The optimal output limits of the dual-input PSS are evaluated by time-domain simulation in both a single machine infinite bus(SMIB) system and a multi-machine power system in comparison with those of a single-input PSS.

Thermal Analysis of a Battery Cooling System with Aluminum Cooling Plates for Hybrid Electric Vehicles and Electric Vehicles (알루미늄 냉각 판을 이용한 하이브리드/전기차용 배터리 냉각시스템의 수치적 연구)

  • Baek, Seungki;Park, Sungjin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.60-67
    • /
    • 2014
  • The battery cells in lithium-ion battery pack assembled with high-capacity and high-power pouch cells, are commonly cooled with thin aluminum cooling plates in contact with the cells. For HEV/EV lithium-ion battery systems assembled with high-capacity, high-power pouch cells, the cells are commonly cooled with thin aluminum cooling plates in contact with the cells. Thin aluminum cooling plates are cooled by cold plate with coolant flow paths. In this study, the effect of the battery cooling system design including aluminum cooling plate thickness and various position of cold plate on the cooling performance are investigated by using finite element methods (FEM). Optimal cooling plate and cold plate design are proposed for improving the uniformity in temperature distributions as well as lowering average temperature for the cells with large capacities based on the simulation results.