• Title/Summary/Keyword: Hybrid Strategy

Search Result 478, Processing Time 0.03 seconds

A Promising Vaccination Strategy against COVID-19 on the Horizon: Heterologous Immunization

  • Mattoo, Sameer-ul-Salam;Myoung, Jinjong
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.12
    • /
    • pp.1601-1614
    • /
    • 2021
  • To overcome the ongoing COVID-19 pandemic, vaccination campaigns are the highest priority of majority of countries. Limited supply and worldwide disproportionate availability issues for the approved vaccines, together with concerns about rare side-effects have recently initiated the switch to heterologous vaccination, commonly known as mixing of vaccines. The COVID-19 vaccines are highly effective in the general population. However, none of the vaccines is 100% efficacious or effective, with variants posing more challenges, resulting in breakthrough cases. This review summarizes the current knowledge of immune responses to variants of concern (VOC) and breakthrough infections. Furthermore, we discuss the scope of heterologous vaccination and future strategies to tackle the COVID-19 pandemic, including fractionation of vaccine doses and alternative route of vaccination.

Analyzing Offline and Online Entrepreneurship Course Outcomes and Remote Education Strategy (비대면 강의 운영 전략: 온라인 창업수업을 중심으로)

  • Lee, Joosung
    • Journal of Engineering Education Research
    • /
    • v.25 no.5
    • /
    • pp.55-67
    • /
    • 2022
  • Distance learning has become an efficient tool and is being widely used at work and in school. This research presents the results of a project-oriented entrepreneurship course taught both in classroom and online for a period of 3 years before and after the pandemic caused by COVID-19. Despite the various challenges, the outcome demonstrated that the students were able to attain required knowledge and capabilities in the online learning environment. As such, this paper discusses effective ways to blend in distance learning components so that both instructors and students can benefit from Internet-based education technologies. In the future, both face-to-face and virtual project work and study are likely to get integrated into a 'hyflex' class, which is flexible, on-offline education.

Genenation of structural diversity in polyketides by combinatorial biosynthesis of polyketides: Part I. Generation of multiple bioactive macrolides by hybrid modular polyketide synthases in Streptomyces venezuelae, Part II. Production of novel rifamycins by combinatorial biosynthesis

  • Yoon, Yeo-Joon
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2002.10a
    • /
    • pp.18-25
    • /
    • 2002
  • The pikromycin biosynthetic system in Streptomyces venezuleae is unique for its ability to produce two groups of antibiotics that include the 12-membered ring macrolides methymycin and neomethymycin, and the 14-membered ring macrolides narbomycin and pikromycin. The metabolic pathway also contains two post polyketide-modification enzymes, a glycosyltransferase and P450 hydroxylase that have unusually broad substrate specificities. In order to explore further the substrate flexibility of these enzymes a series of hybrid polyketide synthases were constructed and their metabolic products characterized. The plasmid-based replacement of the multifunctional protein subunits of the pikromycin PKS in S. venezuelae by the corresponding subunits from heterologous modular PKSs resulted in recombinant strains that produce both 12- and 14-membered ring macrolactones with predicted structural alterations. In all cases, novel macrolactones were produced and further modified by the DesVII glycosyltransferase and PikC hydroxylase leading to biologically active macrolide structures. These results demonstrate that hybrid PKSs in S. venezuelae can produce a multiplicity of new macrolactones that are modified further by the highly flexible DesVII glycosyltransferase and PikC hydroxylase tailoring enzymes. This work demonstrates the unique capacity of the S. venezuelae pikromycin pathway to expand the toolbox of combinatorial biosynthesis and to accelerate the creation of novel biologically active natural products. The polyketide backbone of rifamycin B is assembled through successive condensation and ${\beta}$-carbonyl processing of the extender units by the modular rifamycin PKS. The eighth module, in the RifD protein, contains nonfunctional DH domain and functional KR domain, which specify the reduction of the ${\beta}$-carbonyl group resulting in the C-21 bydroxyl of rifamycin B. A four amino acid substitution and one amino acid deletion were introduced in the putative NADPH binding motif in the proposed KR domain encoded by rifD. This strategy of mutation was based on the amino acid sequences of the corresponding motif of the KR domain of module 3 in the RifA protein, which is believed dysfunctional, so as to introduce a minimum alteration and retain the reading frame intact, yet ensure loss of function. The resulting strain produces linear polyketides, from tetraketide to octaketide, which are also produced by a rifD disrupted mutant as a consequence of premature termination of polyketide assembly. Much of the structural diversity within the polyketide superfamily of natural products is due to the ability of PKSs to vary the reduction level of every other alternate carbon atom in the backbone. Thus, the ability to introduce heterologous reductive segments such as ketoreductase (KR), dehydratase (DH), and enoylreductase (ER) into modules that naturally lack these activities would increase the power of the combinatorial biosynthetic toolbox. The dehydratase domain of module 7 of the rifamycin PKS, which is predicted to be nonfunctional in view of the sequence of the apparent active site, was replaced with its functional homolog from module 7 of rapamycin-producing polyketide synthase. The resulting mutant strain behaved like a rifC disrupted mutant, i.e., it accumulated the heptaketide intermediate and its precursors. This result points out a major difficulty we have encountered with all the Amycolatopsis mediterranei strain containing hybrid polyketide synthases: all the engineered strains prepared so far accumulate a plethora of products derived from the polyketide chain assembly intermediates as major products instead of just analogs of rifamycin B or its ansamycin precursors.

  • PDF

Solid Phase Synthesis of Lysine-exposed Peptide-Polymer Hybrids by Atom Transfer Radical Polymerization (ATRP를 이용한 Lysine 말단기를 가진 펩타이드-고분자 하이브리드 합성)

  • Ha, Eun-Ju;Kim, Mijin;Kim, Jinku;An, Seong Soo A.;Paik, Hyun-Jong
    • Polymer(Korea)
    • /
    • v.38 no.4
    • /
    • pp.550-556
    • /
    • 2014
  • Recently, the peptide(or protein)-polymer hybrid materials (PPs) were sought in many research areas as potential building blocks for assembling nanostructures in selective solvents. In PPs, the facile routes of preparing well-defined peptide-polymer bio-conjugates and their specific activities in various applications are important issues. Our strategy to prepare the peptide-polymer hybrid materials was to combine atom transfer radical polymerization (ATRP) method with solid phase peptide synthesis. The standard solid phase peptide synthesis method was employed to prepare the PYGK (proline-tyrosine-glycine-lysine) peptide. PYGK is an analogue peptide, PFGK (proline-phenylalanine-glycine-lysine), which interacted with plasminogen in fibrinolysis. The peptide and the peptide-initiator were characterized with MALDI-TOF mass spectrometry and $^1H$ NMR spectrometer. The peptide-polymer, pSt-PYGK was characterized by GPC, IR, $^1H$ NMR spectrometer and TLC. Spherical micellar aggregates were determined by TEM and SEM. Current synthesis methodology suggested opportunities to create the well-defined peptide-polymer hybrid materials with specific binding activity.

Two-phases Hybrid Approaches and Partitioning Strategy to Solve Dynamic Commercial Fleet Management Problem Using Real-time Information (실시간 정보기반 동적 화물차량 운용문제의 2단계 하이브리드 해법과 Partitioning Strategy)

  • Kim, Yong-Jin
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.2 s.73
    • /
    • pp.145-154
    • /
    • 2004
  • The growing demand for customer-responsive, made-to-order manufacturing is stimulating the need for improved dynamic decision-making processes in commercial fleet operations. Moreover, the rapid growth of electronic commerce through the internet is also requiring advanced and precise real-time operation of vehicle fleets. Accompanying these demand side developments/pressures, the growing availability of technologies such as AVL(Automatic Vehicle Location) systems and continuous two-way communication devices is driving developments on the supply side. These technologies enable the dispatcher to identify the current location of trucks and to communicate with drivers in real time affording the carrier fleet dispatcher the opportunity to dynamically respond to changes in demand, driver and vehicle availability, as well as traffic network conditions. This research investigates key aspects of real time dynamic routing and scheduling problems in fleet operation particularly in a truckload pickup-and-delivery problem under various settings, in which information of stochastic demands is revealed on a continuous basis, i.e., as the scheduled routes are executed. The most promising solution strategies for dealing with this real-time problem are analyzed and integrated. Furthermore, this research develops. analyzes, and implements hybrid algorithms for solving them, which combine fast local heuristic approach with an optimization-based approach. In addition, various partitioning algorithms being able to deal with large fleet of vehicles are developed based on 'divided & conquer' technique. Simulation experiments are developed and conducted to evaluate the performance of these algorithms.

Enhanced Variable Structure Control With Fuzzy Logic System

  • Charnprecharut, Veeraphon;Phaitoonwattanakij, Kitti;Tiacharoen, Somporn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.999-1004
    • /
    • 2005
  • An algorithm for a hybrid controller consists of a sliding mode control part and a fuzzy logic part which ar purposely for nonlinear systems. The sliding mode part of the solution is based on "eigenvalue/vector"-type controller is used as the backstepping approach for tracking errors. The fuzzy logic part is a Mamdani fuzzy model. This is designed by applying sliding mode control (SMC) method to the dynamic model. The main objective is to keep the update dynamics in a stable region by used SMC. After that the plant behavior is presented to train procedure of adaptive neuro-fuzzy inference systems (ANFIS). ANFIS architecture is determined and the relevant formulation for the approach is given. Using the error (e) and rate of error (de), occur due to the difference between the desired output value (yd) and the actual output value (y) of the system. A dynamic adaptation law is proposed and proved the particularly chosen form of the adaptation strategy. Subsequently VSC creates a sliding mode in the plant behavior while the parameters of the controller are also in a sliding mode (stable trainer). This study considers the ANFIS structure with first order Sugeno model containing nine rules. Bell shaped membership functions with product inference rule are used at the fuzzification level. Finally the Mamdani fuzzy logic which is depends on adaptive neuro-fuzzy inference systems structure designed. At the transferable stage from ANFIS to Mamdani fuzzy model is adjusted for the membership function of the input value (e, de) and the actual output value (y) of the system could be changed to trapezoidal and triangular functions through tuning the parameters of the membership functions and rules base. These help adjust the contributions of both fuzzy control and variable structure control to the entire control value. The application example, control of a mass-damper system is considered. The simulation has been done using MATLAB. Three cases of the controller will be considered: for backstepping sliding-mode controller, for hybrid controller, and for adaptive backstepping sliding-mode controller. A numerical example is simulated to verify the performances of the proposed control strategy, and the simulation results show that the controller designed is more effective than the adaptive backstepping sliding mode controller.

  • PDF

Hybrid All-Reduce Strategy with Layer Overlapping for Reducing Communication Overhead in Distributed Deep Learning (분산 딥러닝에서 통신 오버헤드를 줄이기 위해 레이어를 오버래핑하는 하이브리드 올-리듀스 기법)

  • Kim, Daehyun;Yeo, Sangho;Oh, Sangyoon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.7
    • /
    • pp.191-198
    • /
    • 2021
  • Since the size of training dataset become large and the model is getting deeper to achieve high accuracy in deep learning, the deep neural network training requires a lot of computation and it takes too much time with a single node. Therefore, distributed deep learning is proposed to reduce the training time by distributing computation across multiple nodes. In this study, we propose hybrid allreduce strategy that considers the characteristics of each layer and communication and computational overlapping technique for synchronization of distributed deep learning. Since the convolution layer has fewer parameters than the fully-connected layer as well as it is located at the upper, only short overlapping time is allowed. Thus, butterfly allreduce is used to synchronize the convolution layer. On the other hand, fully-connecter layer is synchronized using ring all-reduce. The empirical experiment results on PyTorch with our proposed scheme shows that the proposed method reduced the training time by up to 33% compared to the baseline PyTorch.

Robust Design of vehicle Intoner Noise using Taguchi method and Substructure Synthesis Method (다구찌법과 부분구조합성법을 이용한 차실소음 강건설계)

  • Kim, Hyo-Sig;Tanneguy, DE-KERDREL;Kim, Hee-Jin;Cho, Hyo-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.134-139
    • /
    • 2005
  • This paper presents a robust design of vehicle interior noise using Taguchi method and a substructure synthesis method with a hybrid model. Firstly, the proposed method identifies the critical process of the concerned interior noise through a TPA (Transfer Path Analysis). Secondly, a strategy for a robust design is discussed, in which the major noise factor among uncertainties in the process is quality distribution of rubber bushes connecting a cradle and a trimmed body. Thirdly, a virtual test model fer the process is developed by applying a substructure synthesis method with a hybrid modeling approach. Fourthly, virtual tests are carried out according to the predefined tables of orthogonal array in Taguchi robust design process. The process was performed under 2 sub-steps. The first step is sensitivity analysis of 31 panels, and the other step is weight optimization of mass dampers on sensitive panels. Finally, two vehicles with the proposed countermeasures were validated. The proposed method reduces 87.5% of trials of measurements due to the orthogonal arrays and increases robustness by 8.6dB of S/N ratio and decreases $5\;dB(A){\sim}10\;dB(A)$ of interior noise in the concerned range of RPM.

  • PDF

An Off-line Maximum Torque Control Strategy of Wound Rotor Synchronous Machine with Nonlinear Parameters

  • Wang, Qi;Lee, Heon-Hyeong;Park, Hong-Joo;Kim, Sung-Il;Lee, Geun-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.609-617
    • /
    • 2016
  • Belt-driven Starter Generator (BSG) differs from other mild hybrid systems as the crankshaft of vehicle are not run off. Motor permits a low-cost method of adding mild hybrid capabilities such as start-stop, power assist, and mild levels of regenerative braking. Wound rotor synchronous motor (WRSM) could be adopted in BSG system for HEV e-Assisted application instead of the interior permanent magnet synchronous motor (IPMSM). In practice, adequate torque is indispensable for starter assist system, and energy conversion should be taken into account for the HEV or EV as well. Particularly, flux weakening control is possible to realize by adjusting both direct axis components of current and field current in WRSM. Accordingly, this paper present an off-line current acquisition algorithm that can reasonably combine the stator and field current to acquire the maximum torque, meanwhile the energy conversion is taken into consideration by losses. Besides, on account of inductance influence by non-uniform air gap around rotor, nonlinear inductances and armature flux linkage against current variation are proposed to guarantee the results closer to reality. A computer-aided method for proposed algorithm are present and results are given in form of the Look-up table (LUT). The experiment shows the validity of algorithm.

Significance of Human Telomerase RNA Gene Amplification Detection for Cervical Cancer Screening

  • Chen, Shao-Min;Lin, Wei;Liu, Xin;Zhang, You-Zhong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.2063-2068
    • /
    • 2012
  • Aim: Liquid-based cytology is the most often used method for cervical cancer screening, but it is relatively insensitive and frequently gives equivocal results. Used as a complementary procedure, the high-risk human papillomavirus (HPV) DNA test is highly sensitive but not very specific. The human telomerase RNA gene (TERC) is the most often amplified oncogene that is observed in cervical precancerous lesions. We assessed genomic amplification of TERC in liquid-based cytological specimens to explore the optimal strategy of using this for cervical cancer screening. Methods: Six hundred and seventy-one residual cytological specimens were obtained from outpatients aged 25 to 64 years. The specimens were evaluated by the Digene Hybrid Capture 2 (HC2) HPV DNA test and fluorescence in situ hybridization (FISH) with a chromosome probe to TERC (3q26). Colposcopic examination and histological evaluation were performed where indicated. Results: The TERC positive rate was higher in the CIN2+ (CIN2, CIN3 and SCC) group than in the normal and CIN 1 groups (90.0% vs. 10.4%, p < 0.01). In comparison with the HC2 HPV DNA test, the TERC amplification test had lower sensitivity but higher specificity (90.0% vs. 100.0%, 89.6% vs. 44.0%, respectively). TERC amplification test used in conjunction with the HC2 HPV DNA test showed a combination of 90.0% sensitivity and 92.2% specificity. Conclusion: The TERC amplification test can be used to diagnose cervical precancerous lesions. TERC and HPV DNA co-testing shows an optimal combination of sensitivity and specificity for cervical cancer screening.