• 제목/요약/키워드: Hybrid Strategy

검색결과 480건 처리시간 0.032초

Efficient Hybrid Carrier Based Space Vector Modulation for a Cascaded Multilevel Inverter

  • Govindaraju, C.;Baskaran, K.
    • Journal of Power Electronics
    • /
    • 제10권3호
    • /
    • pp.277-284
    • /
    • 2010
  • This paper presents a novel hybrid carrier based space vector modulation for cascaded multilevel inverters. The proposed technique inherits the properties of carrier based space vector modulation and the fundamental frequency modulation strategy. The main characteristic of this modulation are the reduction of power loss, and improved harmonic performance. The carrier based space vector modulation algorithm is implemented with a TMS320F2407 digital signal processor. A Xilinx Complex Programmable Logic Device is used to develop the hybrid PWM control algorithm and it is integrated with a digital signal processor for hybrid carrier based space vector PWM generation. The inverter offers less weighted total harmonic distortion and it operates with equal electrostatic and electromagnetic stress among the power devices. The feasibility of the proposed technique is verified by spectral analysis, simulation, and experimental results.

Verification of Hybrid Real Time HVDC Simulator in Cheju-Haenam HVDC System

  • Yang Byeong-Mo;Kim Chan-Ki;Jung Gil-Jo;Moon Young-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권1호
    • /
    • pp.23-27
    • /
    • 2006
  • In this paper a Hybrid Real Time HVDC Simulator fur both operator Training and Researching in the Cheju-Haenam HVDC System is proposed and its performance is studied by means of RTDS (Real Time Digital Simulator), EMTDC (Electro-Magnetic Transients system for DC), PSS/E (Power System Simulator for Engineering), and experienced scenarios. The objective of this paper is to represent the strategy in development for KEPCO's hybrid HVDC simulator for the Cheju-Haenam HVDC system. This simulator consists of two DC stations, DC cables, external digital/analog controllers, monitoring systems and control desk for education, and AC networks. Its suitability for operator's education is tested during startup/shutdown and normal state operations. Dynamic performances of it are also verified.

Hybrid Pulse Width Modulation Strategy for Wide Speed Range in IPMSM with Low Cost Drives

  • Ahn, Han-woong;Go, Sung-chul;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권3호
    • /
    • pp.670-674
    • /
    • 2016
  • The control performance of hybrid PWM inverter using a phase current measurement is presented in this paper. The hybrid PWM technique consists of space vector pulse width modulation (SVPWM) and six-step voltage control operation. The SVPWM is performed to reduce the harmonic components in the low speed region, and the six-step modulation is applied to increase the maximum speed of the IPMSM in the high speed region. Therefore, it is possible to obtain a great performance in both the low speed range and high speed range. However, the six-step modulation cannot be completely implemented, since the inverter that includes the lag-shunt sensing method has an immeasurable current region. In this paper, a quasi-six-step modulation using a modified voltage vector is proposed. The validity and usefulness of the proposed PWM technique is verified by MATLAB/Simulink and experimental results.

철도차량용 연료전지 하이브리드 동력시스템 (Fuel Cell Hybrid Power System for Railway Vehicles)

  • 김영렬;박영호;김영수
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.855-861
    • /
    • 2008
  • The development of fuel cell hybrid power system, as a next generation power system for solving the global warming, has been being made actively progress around passenger vehicles. Also, in case of railway vehicles in unelectrified railway line, the adoption of fuel cell hybrid power system is being studied around well-known manufacturers. This paper introduces both the configuration and the control strategy of fuel cell hybrid power system in order to apply to a light electronic railway vehicle having a repeated driving pattern of acceleration, coasting and deceleration and provides simulation results to evaluate their validity.

  • PDF

작업장치 위치에너지 회생을 위한 하이브리드 굴삭기 시스템 개발 (Development of Hybrid Excavator for Regeneration of Boom Potential Energy)

  • 윤종일;안경관;딩광졍;강종민;김재홍
    • 유공압시스템학회논문집
    • /
    • 제6권4호
    • /
    • pp.1-8
    • /
    • 2009
  • Nowadays with the high fuel prices, the demands for energy saving and green emission of construction machinery have highly been increased without sacrifice of working performance, safety and reliability. The aim of this paper is to propose a new energy saving hybrid excavator system using an electro-hydraulic actuator driven by an electric motor/generator for the regeneration of potential energy. A 5 ton class excavator is analyzed, developed with the boom for the evaluation of the designed system. The hardware implementation is also presented in this paper. A control strategy for the hybrid excavator is proposed to operate the machine with a highest efficiency. The energy saving ability of the proposed excavator is clearly verified through simulation and experimental results in comparison with a conventional hydraulic excavator.

  • PDF

Hybrid Multicast and Segment-Based Caching for VoD Services in LTE Networks

  • Choi, Kwangjin;Choi, Seong Gon;Choi, Jun Kyun
    • ETRI Journal
    • /
    • 제37권4호
    • /
    • pp.685-695
    • /
    • 2015
  • This paper proposes a novel video delivery scheme that reduces the bandwidth consumption cost from a video server to terminals in Long-Term Evolution networks. This proposed scheme combines optimized hybrid multicast with a segment-based caching strategy for use in environments where the maximum number of multicast channels is limited. The optimized hybrid multicast, allocation of multicast channels, and cache allocation are determined on the basis of a video's request rate, the related video's length, and the variable cost per unit size of a segment belonging to the related video. Performance evaluation results show that the proposed scheme reduces a video's delivery costs. This work is applicable to on-demand TV services that feature asynchronous video content requests.

디젤-전기 Hybrid 엔진용 유도기의 설계 및 특성해석 (Design and Characteristics Analysis of Induction machine for Diesel-Electric Hybrid Engine)

  • 조윤현;이재봉;구대현;하희두;유우현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 A
    • /
    • pp.27-29
    • /
    • 1995
  • This paper presents the design and characteristics analysis of induction machine for diesel-electric hybrid vehicle powertrain. Diesel-electric hybrid vehicles are very efficacious in reduction of consumption energy, environment pollution and saftly yields with high dynamic of machines. However, their sophisticated construction requires from designers both complex made-technology and control strategy which would be able to put into practice this requirements. These problems are still considered in processing the design and analysis of induction machine. The requirements for a given volume, input power to weight ratio, high efficiency and wide speed range are met by the induction machine.

  • PDF

Hybrid Vibration Control of Smart Laminated Composite Beams using Piezoelectric and Viscoelastic Material

  • Kang, Young-Kyu
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권1호
    • /
    • pp.37-42
    • /
    • 2003
  • Active control of flexural vibrations of smart laminated composite beams has been carried out using piezoceramic sensor/actuator and viscoelastic material. The beams with passive constrained layer damping have been analyzed by formulating the equations of motion through the use of extended Hamilton's principle. The dynamic characteristics such as damping ratio and modal damping of the beam are calculated for various fiber orientations by means of iterative complex eigensolution method. This paper addresses a design strategy of laminated composite under flexural vibrations to design structure with maximum possible damping capacity.

하이브리드 에너지 저장장치를 탑재한 무가선 트램의 전력분배전략 (Power Distribution Strategy for Wireless Tram with Hybrid Energy Storage System)

  • 강경진;오용국;이지호;염민규;곽재호;이형철
    • 전기학회논문지
    • /
    • 제63권11호
    • /
    • pp.1615-1621
    • /
    • 2014
  • A wireless tram which runs without catenary and instead uses batteries installed in the tram has been recently researched actively. This paper presents a new method maximizing absorption of regenerative energy of a wireless tram and extending life cycle of the energy storage device in the wireless tram by applying line-optimized charging and discharging scenario. Energy efficiency and life cycle of energy storage system (ESS) are highly dependent on the characteristic of operating conditions. For example, frequent charge and discharge with high power cause the problems that decrease the battery life cycles. Hybrid energy storage system (HESS) is combination of two ESSs which have complementary characteristics to each other. HESS can provide even better functionality and performance than the battery only ESS due to the synergy effect of two ESSs. This paper also provides a power distribution strategy and driving scenarios which increase the life cycle and energy efficiency of the HESS consisting of a battery and an ultra-capacitor. The developed strategy was tested and verified by a hardware-in-the-loop-simulation (HILS) system which emulates the a wireless tram.

Power Allocation Optimization and Green Energy Cooperation Strategy for Cellular Networks with Hybrid Energy Supplies

  • Wang, Lin;Zhang, Xing;Yang, Kun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권9호
    • /
    • pp.4145-4164
    • /
    • 2016
  • Energy harvesting is an increasingly attractive source of power for cellular networks, and can be a promising solution for green networks. In this paper, we consider a cellular network with power beacons powering multiple mobile terminals with microwave power transfer in energy beamforming. In this network, the power beacons are powered by grid and renewable energy jointly. We adopt a dual-level control architecture, in which controllers collect information for a core controller, and the core controller has a real-time global view of the network. By implementing the water filling optimized power allocation strategy, the core controller optimizes the energy allocation among mobile terminals within the same cluster. In the proposed green energy cooperation paradigm, power beacons dynamically share their renewable energy by locally injecting/drawing renewable energy into/from other power beacons via the core controller. Then, we propose a new water filling optimized green energy cooperation management strategy, which jointly exploits water filling optimized power allocation strategy and green energy cooperation in cellular networks. Finally, we validate our works by simulations and show that the proposed water filling optimized green energy cooperation management strategy can achieve about 10% gains of MT's average rate and about 20% reduction of on-grid energy consumption.