• 제목/요약/키워드: Hybrid Spill Tree

검색결과 3건 처리시간 0.017초

고차원 벡터 데이터 색인을 위한 시그니쳐-기반 Hybrid Spill-Tree의 설계 및 성능평가 (Design and Performance Analysis of Signature-Based Hybrid Spill-Tree for Indexing High Dimensional Vector Data)

  • 이현조;홍승태;나소라;장유진;장재우;심춘보
    • 인터넷정보학회논문지
    • /
    • 제10권6호
    • /
    • pp.173-189
    • /
    • 2009
  • 최근 UCC를 중심으로 동영상 데이터에 대해 사람들의 관심이 증가하고 있다. 따라서 동영상 데이터의 내용-기반 검색을 지원하는 효율적인 색인 기법이 요구된다. 그러나 Hybrid Spill-Tree를 제외한 대부분의 색인 기법들은 대용량의 고차원 데이터를 다루는데 비효율적이다. 본 논문에서는 동영상 데이터의 내용-기반 검색을 지원하기 위한 효율적인 고차원 색인 기법을 제안한다. 제안하는 고차원 색인 기법은 기존 Hybrid Spill-Tree을 기반으로 새롭게 제안하는 클러스터링 방법과 시그니쳐를 이용한 데이터 저장 방법을 결합하여 확장된 색인 기법이다. 또한 제안하는 시그니쳐-기반 고차원 색인 기법이 기존 M-Tree 및 Hybrid Spill-Tree에 비해 성능이 우수함을 보인다.

  • PDF

대용량 데이터의 내용 기반 검색을 위한 분산 고차원 색인 구조 (A Distributed High Dimensional Indexing Structure for Content-based Retrieval of Large Scale Data)

  • 최현화;이미영;김영창;장재우;이규철
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제37권5호
    • /
    • pp.228-237
    • /
    • 2010
  • 고차원 데이터에 대한 다양한 색인 구조가 제안되어 왔음에도 불구하고, 인터넷 서비스로서 이미지 및 동영상의 내용 기반 검색을 지원하기 위해서는 고확장성 지원 및 k-최근접점 검색 성능 향상을 지원하는 새로운 고차원 데이터의 색인 구조가 절실히 요구된다. 이에 우리는 다중 컴퓨팅 노드를 바탕으로 구축되는 분산 색인 구조로 분산 벡터 근사 트리(Distributed Vector Approximation-tree)를 제안한다. 분산 벡터 근사 트리는 대용량의 고차원 데이터로부터 추출한 샘플 데이터를 바탕으로 hybrid spill-tree를 구축하고, hybrid spill-tree외 말단 노드 각각에 분산 컴퓨팅 노드를 매핑하여 VA-file용 구축하는 두 레벨의 분산 색인 구조이다. 우리는 다중 컴퓨팅 노드들 상에 구축된 분산 벡터 근사 트리를 바탕으로 병렬 k-최근접점 검색을 수행함으로써 검씩 성능을 향상시킨다. 본 논문에서는 서로 다른 분포의 데이터 집합을 바탕으로 한 성능 시험 결과를 통하여, 분산 벡터 근사 트리가 기존의 고확장성을 지원하는 색인 구조와 비교하여 검색 정확도에 대한 손실 없이 더 빠른 k-최근접점 검색을 수행함을 보인다.

독립적인 벡터 근사에 의한 분산 벡터 근사 트리의 성능 강화 (Performance Enhancement of a DVA-tree by the Independent Vector Approximation)

  • 최현화;이규철
    • 정보처리학회논문지D
    • /
    • 제19D권2호
    • /
    • pp.151-160
    • /
    • 2012
  • 지금까지 제안된 분산 고차원 색인의 대부분은 균일한 분포를 가지는 데이터 집합에서 좋은 검색 성능을 나타내나, 편향되거나 클러스터를 이루는 데이터의 집합에서는 그 성능이 크게 감소된다. 본 논문은 강하게 클러스터를 이루거나 편향된 분포를 가지는 데이터 집합에 대한 분산 벡터 근사 트리의 k-최근접 검색 성능을 향상시키는 방법을 제안한다. 기본 아이디어는 전체 데이터를 클러스터링하는 상위 트리의 말단 노드가 담당하는 데이터 공간의 크기를 계산하고, 그 공간 상의 특징 벡터를 근사하는 데 사용되는 비트의 수를 달리하여 벡터 근사의 식별 능력을 보장하는 것이다. 즉, 고밀도 클러스터에는 더 많은 수의 비트를 할당하는 것이다. 우리는 합성 데이터와 실세계 데이터를 가지고 분산 hybrid spill-tree와 기존 분산 벡터 근사 트리와의 성능 비교 실험을 수행하였다. 실험 결과는 확장된 분산 벡터 근사 트리의 검색 성능이 균일하지 않은 분포의 데이터 집합에서 크게 향상되었음을 보인다.