• Title/Summary/Keyword: Hybrid Robot

Search Result 231, Processing Time 0.031 seconds

Hybrid Position/Force Controller Design of the Robot Manipulator Using Neural Networks (신경회로망을 이용한 로보트 매니률레이터의 하이브리드 위치/힘 제어기 설계)

  • 조현찬;전홍태;이홍기
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.11
    • /
    • pp.897-903
    • /
    • 1991
  • In this paper we propose a hybrid position/force controller of a robot manipulator using feedback error learning rule and neural networks. The neural network is constructed from inverse dynamics. The weighting value of each neuron is trained by using a feedback force as an error signal. If the neural networks are sufficiently trained well, it does not require the feedback-loop with error signals. The effectiveness of the proposed hybrid position/force controller is demonstrated by computer simulation using PUMA 560 manipulator.

  • PDF

Robotic Assembly Using Configuration and Force/Torque Information of Tactile Sensor System (접촉센서의 형상과 힘/토크 정보를 이용한 로봇조립)

  • 강이석;김근묵;윤지섭;조형석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2315-2327
    • /
    • 1992
  • A robot assembly method which uses configuration and force/torque information of tactile sensor system and performs chamferless peg-in-hole tasks is suggested and experimentally studied. When the robot gripes the peg with random orientation, the realignment of the peg to the hole center line is successfully performed with the gripping configuration information of the tactile sensor and the inverse kinematics of the robot. The force/torque information of the tactile sensor makes it possible to control the contacting force between mating parts during hole search stage. The suggested algorithm employs a hybrid position/force control and the experiments show that the algorithm accomplishes well peg-in-hole tasks with permissible small contacting force. The chamferless peg-in-hole tasks with smaller clearance than the robot repeatibility can be excuted without any loss or deformation of mating parts. This study the possibility of precise and chamferless parts mating by robot and tactile sensor system.

Motion Planning and Control for Mobile Robot with SOFM

  • Yun, Seok-Min;Choi, Jin-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1039-1043
    • /
    • 2005
  • Despite the many significant advances made in robot architecture, the basic approaches are deliberative and reactive methods. They are quite different in recognizing outer environment and inner operating mechanism. For this reason, they have almost opposite characteristics. Later, researchers integrate these two approaches into hybrid architecture. In such architecture, Reactive module also called low-level motion control module have advantage in real-time reacting and sensing outer environment; Deliberative module also called high-level task planning module is good at planning task using world knowledge, reasoning and intelligent computing. This paper presents a framework of the integrated planning and control for mobile robot navigation. Unlike the existing hybrid architecture, it learns topological map from the world map by using MST (Minimum Spanning Tree)-based SOFM (Self-Organizing Feature Map) algorithm. High-level planning module plans simple tasks to low-level control module and low-level control module feedbacks the environment information to high-level planning module. This method allows for a tight integration between high-level and low-level modules, which provide real-time performance and strong adaptability and reactivity to outer environment and its unforeseen changes. This proposed framework is verified by simulation.

  • PDF

Extraction of Human Body Using Hybrid Silhouette Extraction Method in Intelligent Robot System (지능형 로봇 시스템에서 하이브리드 실루엣 추출 방법을 이용한 인간의 몸 추출)

  • Kim Moon Hwan;Joo Young Hoon;Park Jin Bae;Cho Young Jo;Chi Su Young;Kim hye Jin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.7
    • /
    • pp.852-857
    • /
    • 2005
  • This paper discusses a human body extraction method for intelligent robot system. The intelligent robot system requires more robust silhouette extraction method because it has internal vibration and low resolution. The new hybrid silhouette extraction method is proposed to overcome this constrained environment. The temporal and gradient information is combined as hybrid silhouette. The motion region model is used to adjust combining parameters in hybrid silhouette. Finally, the experimental results show the superiority of the proposed method.

Sequencing Strategy for Autonomous Mobile Robots in Real Environments (이동로봇 자율주행을 위한 행위모듈의 실행순서 조정기법)

  • 송인섭;박정민;오상록;조영조;박귀태
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.3
    • /
    • pp.297-305
    • /
    • 1999
  • Autonomous mobile robots are required to achieve multiple goals while responding quickly to the dynamic environments. An appropriate robot control architecture, which clearly and systematically defines the relationship among the inputs, the processing functions and the outputs, thus needs to be embedded in the robot controller. This paper proposes a kind of hybrid control architecture which combines the key features of the two well-known robot control architectures; hierarchical and behavioral- based. The overall control architecture consists of three layers, i.e. the highest planner, the middle plan executor, and the lowest monitor and behavior-based controller. In the planned situation, only one behavior module is chosen by the logical coordinator in the plan executor according to the way point bin. In the exceptional situation, the central controller in the plan executor issues an additional control command to reach the planned way point. Several simulations and experiments with autonomous mobile robot show that the proposed architecture enables the robot controller to achieve the multiple sequential goals even in dynamic and uncertain environments.

  • PDF

Hybrid Position/Force Control of Robot Manipulator using Fuzzy Logic Control

  • Ahn, Ihn-Seok;ahn, Kwang-Seok;Kim, Sang-Bin;Jang, Jun-Oh;Park, Sang-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.129.5-129
    • /
    • 2001
  • When a robot manipulator performs some task like grinding or assembling, not only the position control but also the force control of the tools connected to the robot must be controlled. But at this time We were received the uncertainty problems of system information for the force control, for example disturbance, senor resolution and measurement noise. Therefore we proposed fuzzy logic control method instead of existing control theory for the robot manipulator control, for example PID control method. In this paper, We proposed hybrid position/force control of robot manipulator using fuzzy logic control method. To show the validity of the proposed fuzzy controller, We compared fuzzy controller with conventional PID controller.

  • PDF

Hybrid Tension/Mobile Control of working Robot for installed Troy Cable (트로이선 가설 작업 로봇의 장력 및 이동 제어에 관한 연구)

  • Hong, Jeng-Pyo;Won, Tae-Hyun;Kim, Mun-Soo;Hong, Soon-Ill
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.455-457
    • /
    • 2007
  • The objective of this study is development of a installed working robot for a troy cable with mobile and tension system. In this paper, an approach to designing controllers for dynamic hybrid Tension/Mobile control of a installed robot for a troy wire cable is presented. Mobile control system of robot is designed based on equation of dc motor and motion for moving robot and tension control system is designed based on equation of ac servomotor for generating torque and dynamic equation of a wire cable. The control parameters is determined by simulation in independence operation of two system.

  • PDF

Path Control of a Mobile Robot Using Fuzzy-Neural Hybrid System (퍼지.신경회로망을 이용한 자율주행 로봇의 경로제어)

  • Lee, B.R.;Lee, W.K.;Yi, H.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.8
    • /
    • pp.19-26
    • /
    • 1995
  • In this paper, a fuzzy-neural hybrid control approach is proposed for controlling a mobile robot that can avoid an unexpected obstacle in a navigational space. First, to describe the global structure of a known environment, a heuristic collision-free space band is introduced. Based on the band, the moving information in the known environment is trained to a neural controller. Then, during the execution of a mobile robot navigation moving information at each position is given the neural controller. If the mobile robot encounters an unexpected obstacle, a fuzzy controller activates to avoid the unexpected obstacle. Finally, some numerical examples are presented to demonstrate the control algorithm.

  • PDF

Study on Hybrid Control for Motion Control of Mobile Robot Systems (이동로봇의 동작 제어를 위한 하이브리드 시스템 제어에 관한 연구)

  • Lim, Mee-Seub;Lim, Jin-Mo;Lim, Joon-Hong;Oh, Sang-Rok
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2348-2350
    • /
    • 1998
  • The hybrid control system for a wheeled mobile robot with nonholonomic constraints to perform a cluttered environment maneuver is proposed. The proposed hybrid control system consists of a continuous state system for the trajectory control, a discrete state system for the motion and orientation control, and an interface control system for the interaction process between the continuous dynamics and the discrete dynamics The continuous control systems are modeled by the switched systems with the control of driving wheels, and the digital automata for motion control are modeled and implemented by the abstracted motion of mobile robot. The motion control tasks such as path generation, motion planning, and trajectory control for a cluttered environment are investigated as the applications by simulation studies.

  • PDF

The study of proton exchange membrane fuel cell and Li-poly battery hybrid system (로봇용 연료전지 이차전지 하이브리드 시스템 연구)

  • Kwon, O-Sung;Lee, Sang-Cheol;Lee, Sang-Woo;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.spc3
    • /
    • pp.282-288
    • /
    • 2012
  • Proton exchange membrane fuel cell (PEMFC) is the most promising energy source for the robot applications because it has unique advantages such as high energy density, no power drop during operating, and easy to make compact size. However, PEMFC has intrinsic disadvantages which are delay to start up and difficulty to correspond drastic load changes. These disadvantages can be compensated by hybrid operating with a Li-poly battery. This study is focus to build and understand the hybrid system for the robot system. In this study, we build the PEMFC hybrid system using EOS-320 PEMFC stack, Li-poly battery and G-Philos FDX1-250BU dc-dc converter. The hybrid system is accurately monitored by CAN and RS485. The system was studied under two conditions such as non-loaded and loaded operating conditions. The results show that the system has delay to start up without hybrid operating and it can be compensated with the hybrid operating.