• Title/Summary/Keyword: Hybrid Power Generation System

Search Result 277, Processing Time 0.031 seconds

Latching Control Strategy for Improvement Wave Energy Conversion in Irregular Waves (불규칙파중 파랑에너지 변환효율 향상을 위한 래칭 제어전략)

  • Cho, Il Hyoung;Kim, Jeong Rok;Kim, Kyong-Hwan;Hong, Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.4
    • /
    • pp.291-297
    • /
    • 2015
  • The wave spectrum was generated from wave data measured at the Chagwi-do site in Jeju, where a 10MW class floating wave-offshore wind hybrid power generation system will be installed. The latching control technology (Sheng et al.[2015]) was applied in order to improve the extracted power from WEC (Wave Energy Converter), which is heaving in corresponding irregular waves. The peak period as a representative value of irregular waves was used when we determined the latching duration. From the numerical results in the time-domain analysis, the latching control technology can significantly improve the extracted power about 50%.

An Optimum Power Rating Selection of a Photovoltaic-Wind Hybrid Generation System Utilizing Least Square Method (최소 자승법을 이용한 태양광.풍력 복합 발전 시스템의 최적 용량 선정)

  • Kim, Si-Kyung;Yu, Gwon-Jong;Song, Jin-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.379-381
    • /
    • 1996
  • 본 논문에서는 그리드 독립형 태양광 풍력 복합 발전 시스템에 대한 최적의 태양광 어레이 사이즈 및 풍력 발전 시스템을 결정하는 방법을 제안하였다. 연구에 사용되어진 풍력 및 태양광 일사량에 대한 데이터는 제주도 지역에서 1년간 실측되어진 데이터를 기준으로 하였으며, 이러한 실측되어진 데이터는 풍속 및 태양광의 확률 밀도 함수(Probability Density Function)를 결정하는데 사용되어 졌다. 풍속 및 태양광 일사량의 확률 밀도 함수와 태양광 어레이 및 풍력 발전기의 여러 파라미터는 복합 발전 시스템의 평균 발생 전력을 계산하는데 사용하였고, 도서지역에서 1년간 계측되어진 부하의 변동에 대하여 최적의 태양광 어레이, 풍력 발전 용량을 선정 하기 위하여 최적 자승의 법칙이 사용되었다.

  • PDF

Comparative Study of Power Sharing Algorithm for Fuel Cell and Photovoltaic Hybrid Generation System of 2CON-1IN Type (2컨버터-1인버터 형태의 복합발전시스템 전력제어 알고리즘 비교분석)

  • Choe, Gyu-Yeong;Kim, Jong-Soo;Moon, Hee-Sung;Lee, Byoung-Kuk;Kim, Tae-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1041_1042
    • /
    • 2009
  • 본 논문에서는 연료전지 태양광 복합발전시스템의 2가지 전력제어 알고리즘을 제안하고 각각의 성능을 비교 분석하였다. 태양광의 MPPT제어 위치에 따라 2가지 전력제어 알고리즘이 적용되었으며 각 알고리즘에 따른 MPPT성능, DC link 안정성과 출력전력 특성이 비교 분석되었으며 시뮬레이션 및 실험을 통해 타당성을 검증하였다.

  • PDF

A study on reducing the harmonics in inverter system for fluorescent lamp (형광등용 인버터 시스템의 고조파 저감에 관한 연구)

  • Park, Chan-Kun;Kim, Jong-Yun;Jeon, Nae-Suck;Park, Jeung-Hwan;Lee, Sung-Geun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1199-1201
    • /
    • 2000
  • This paper proposes a harmonics reducing circuit for fluorescent lamp inverters using hybrid type smoothing circuit with pumping and smoothing capacitors. A waveform of full-wave rectification used as a direct current power supply at fluorescent lamp inverters contains a lot of harmonic wave from inrush current which is generated near the maximum of input voltage with purse shape when voltage smoothing capacitor is charged. Therefore, in order to suppress inrush current which will result in harmonic wave. this paper proposes a method to control abrupt charging current by use of charging voltage at pumping capacitor. The suppression of harmonics generation at lamp current is confirmed through simulations.

  • PDF

A Study on the Generation Capacity and Cost Analysis of Solar-Wind Hybrid Power System (태양광-풍력 복합발전시스템의 용량 산정과 경제성 분석에 관한 연구)

  • Kim, Jong-Hwan;Lee, Seung-Chul;Kwon, Byeong-Gook;Oh, Hae-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.348-350
    • /
    • 2003
  • 본 논문에서는 태양광-풍력 복합발전시스템의 발전용량 예측을 통한 시스템 시설투자비 및 발전단가와 경제성에 대하여 분석한다. 도시지역의 일사량 및 풍속 데이터를 기초로 하여 복합발전시스템의 일일 발전량을 구하고, 수용가의 일일부하패턴과 수요부하를 고려하여 태양전지 어레이와 풍력발전기의 용량을 산정한다. 그리고 용량 산정에 따른 복합발전시스템의 초기투자비용과 연간 발전량, 연간 소요경비 등의 요소를 고려하여 총 수명가 분석법(Total Life-Cycle Cost Analysis)에 기초한 발전단가를 계산하고 잉여전력을 계통에 판매할 경우의 경제성을 평가한다.

  • PDF

Optimal arrangement of multiple wind turbines on an offshore wind-wave floating platform for reducing wake effects and maximizing annual energy production (다수 풍력터빈의 후류영향 최소화 및 연간발전량 극대화를 위한 부유식 파력-해상풍력 플랫폼 최적배치)

  • Kim, Jong-Hwa;Jung, Ji-Hyun;Kim, Bum-Suk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.209-215
    • /
    • 2017
  • A large floating offshore wind-wave hybrid power generation system with an area of 150 m2 and four 3 MW class wind turbine generators was installed at each column top. In accordance with the wind turbine arrangement, the wake generated from upstream turbines can adversely affect the power performance and load characteristics of downstream turbines. Therefore, an optimal arrangement design, obtained through a detailed flow analysis focusing on wake interference, is necessary. In this study, to determine the power characteristics and annual energy production (AEP) of individual wind turbines, transient computational fluid dynamics, considering wind velocity variation (8 m/s, 11.7 m/s, 19 m/s, and 25 m/s), was conducted under different platform conditions ($0^{\circ}$, $22.5^{\circ}$, and $45^{\circ}$). The AEP was calculated using a Rayleigh distribution, depending on the wind turbine arrangement. In addition, we suggested an optimal arrangement design to minimize wake losses, based on the AEP.

Heat Dissipation Technology of IGBT Module Package (IGBT 전력반도체 모듈 패키지의 방열 기술)

  • Suh, Il-Woong;Jung, Hoon-Sun;Lee, Young-Ho;Kim, Young-Hun;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.3
    • /
    • pp.7-17
    • /
    • 2014
  • Power electronics modules are semiconductor components that are widely used in airplanes, trains, automobiles, and energy generation and conversion facilities. In particular, insulated gate bipolar transistors(IGBT) have been widely utilized in high power and fast switching applications for power management including power supplies, uninterruptible power systems, and AC/DC converters. In these days, IGBT are the predominant power semiconductors for high current applications in electrical and hybrid vehicles application. In these application environments, the physical conditions are often severe with strong electric currents, high voltage, high temperature, high humidity, and vibrations. Therefore, IGBT module packages involves a number of challenges for the design engineer in terms of reliability. Thermal and thermal-mechanical management are critical for power electronics modules. The failure mechanisms that limit the number of power cycles are caused by the coefficient of thermal expansion mismatch between the materials used in the IGBT modules. All interfaces in the module could be locations for potential failures. Therefore, a proper thermal design where the temperature does not exceed an allowable limit of the devices has been a key factor in developing IGBT modules. In this paper, we discussed the effects of various package materials on heat dissipation and thermal management, as well as recent technology of the new package materials.

Research Trend of Organic/Inorganic Composite Membrane for Polymer Electrolyte Membrane Fuel Cell (고분자 전해질 연료전지용 유.무기 복합막의 연구개발동향)

  • Kim, Deuk Ju;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.22 no.3
    • /
    • pp.155-170
    • /
    • 2012
  • Fuel cells have been considered as alternative power generation system in the twenty-first century because of eco-friendly system, high power density and efficiency compare with petroleum engine system. Proton exchange membranes (PEMs) are the key components in fuel cell system. Currently, Nafion has been used in fuel cell system. However, Nafion has disadvantages such as low conductivity at high temperature and high cost. The researchers have focused to reach the high properties such as high proton conductivity, low permeability to fuel, good chemical/thermal stability, good mechanical properties and low manufacturing cost. Various methods have been developed for preparation of proton exchange membrane with high performance and commercialization of fuel cell system. The hybrid organic/inorganic membrane has the potentials to provide a unique combination of organic and inorganic properties with improved proton conductivity and mechanical property at high temperatures. So, this paper presents an overview of research trend for the composite membranes prepared by organic/inorganic system using various inorganic materials.

Design of Resonance Linear Electric Generator System for Vibration Energy Harvesting in Vehicle Suspension (차량 주행시 진동에너지 하베스팅을 위한 현가장치 선형 발전기 시스템의 설계)

  • Choi, Ji-Hyun;Shin, Doo-Beom;Kim, Jin-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3357-3362
    • /
    • 2014
  • The purpose of this research was to develop a resonance electric power generator to harvest vibration energy while the vehicle is driving on a road surface. The electric power generator in the paper was designed using the resonance phenomenon to effectively respond to vibrations from the road surface, which is a comparatively small energy source. Vibration displacement analysis using MATLAB and transient analysis using Ansys MAXWELL, which is a commercial electromagnetic analysis program, was performed to predict the input velocity for the generator and verify the electric power generation. If this electric power generator is applicable to hybrid or electric vehicles, it can be valuable around an automotive electric system and help maintain the performance of the vehicle battery.