• Title/Summary/Keyword: Hybrid Photovoltaic-Fuel Cell Generation System

Search Result 14, Processing Time 0.025 seconds

Hybrid System of Solar Cell and Fuel Cell (태양광발전과 연료전지의 하이브리드 시스템)

  • Hwang, Jun-Won;Choi, Young-Sung;Lee, Kyung-Sup
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.568-573
    • /
    • 2009
  • Because of environmental crisis, researchers are seeking and developing a new, clean, safe and renewable energy. Solar cell energy and fuel cell energy have inestimable development potential. The paper introduces hybrid photovoltaic-fuel cell generation systems supplying a remote power load and hybrid system of solar cell and fuel cell considering the advantages of stable and sustainable energy from the economic point of view. Fuel cell power system has been proven a viable technology to back up severe PV power fluctuations under inclement weather conditions. Fuel cell power generation, containing small land us, is able to alleviate the heavy burden for large surface requirement of PV power plants. In addition, the PV-fuel cell hybrid power system shows a very little potential for lifetime $CO_2$ emissions. In this paper shows the I-V characteristics of the solar module which are dependent on the power of the halogen lamp and the I-V characteristics of fuel cells which are connected in parallel. Also, it shows efficiency of the hybrid system.

Grid Independent Photovoltaic Fuel-Cell Hybrid System: Design and Control Strategy

  • Islam Saiful;Belmans Ronnie
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.4
    • /
    • pp.399-404
    • /
    • 2005
  • In this paper, a hybrid photovoltaic fuel-cell generation system employing an electrolyzer for hydrogen generation and battery for storage purpose is designed and simulated. The system is applicable for remote areas or isolated DC loads. Control strategy has been considered to achieve permanent power supply to the load via the photovoltaic/battery or the fuel cell based on the power available from the sun. MATLAB and SIMULINK have been used for the simulation work. A sensitivity analysis is conducted for various load level based on availability of solar radiation.

DC/DC Converter Control for Photovoltaic/Fuel Cell Hybrid Generation system (태양광.연료전지 복합발전 시스템의 DC/DC 컨버터 제어 시뮬레이션)

  • Park, So-Ri;Park, Sang-Hoon;Won, Chung-Yuen;Jung, Yong-Chae;Kim, Yeong-Ryeol
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.353-356
    • /
    • 2008
  • This paper is proposed that the photovoltaic/fuel cell hybrid generation system for the stand-alone system. In case of the photovoltaic generation system, it depends on the weather condition, irradiation and so on... On the contrary, fuel cell has not this limitation. It can be interactive generation system between photovoltaic and fuel cell. This paper simulated stand-alone co-generation system based on the control of DC link. Moreover, 1[kw] BLDC motor system with speed and hysteresis current controller is used for the proposed system.

  • PDF

Design and Implementation of Modified Current Source Based Hybrid DC - DC Converters for Electric Vehicle Applications

  • Selvaganapathi, S.;Senthilkumar, A.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.2
    • /
    • pp.57-68
    • /
    • 2016
  • In this study, we present the modern hybrid system based power generation for electric vehicle applications. We describe the hybrid structure of modified current source based DC - DC converters used to extract the maximum power from Photovoltaic (PV) and Fuel Cell system. Due to reduced dc-link capacitor requirement and higher reliability, the current source inverters (CSI) better compared to the voltage source based inverter. The novel control strategy includes Distributed Maximum Power Point Tracking (DMPPT) for photovoltaic (PV) and fuel cell power generation system. The proposed DC - DC converters have been analyzed in both buck and boost mode of operation under duty cycle 0.5>d, 0.5<d<1 and 0.5<d for capable electric vehicle applications. The proposed topology benefits include one common DC-AC inverter that interposes the generated power to supply the charge for the sharing of load in a system of hybrid supply with photovoltaic panels and fuel cell PEM. An improved control of Direct Torque and Flux Control (DTFC) based induction motor fed by current source converters for electric vehicle.In order to achieve better performance in terms of speed, power and miles per gallon for the expert, to accepting high regenerative braking current as well as persistent high dynamics driving performance is required. A simulation model for the hybrid power generation system based electric vehicle has been developed by using MATLAB/Simulink. The Direct Torque and Flux Control (DTFC) is planned using Xilinx ISE software tool in addition to a Modelsim 6.3 software tool that is used for simulation purposes. The FPGA based pulse generation is used to control the induction motor for electric vehicle applications. FPGA has been implemented, in order to verify the minimal error between the simulation results of MATLAB/Simulink and experimental results.

Economic Evaluation on a private electric Generation Application in Unelectrified Remote Islands in Korea (미 전화 도서 자가 발전방식 도입에 따른 경제성 검토)

  • Ahn, Kyo-Sang;Lim, Hee-Chun;Eom, Young-Chang
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.4
    • /
    • pp.348-358
    • /
    • 2003
  • According to Electricity Acceleration Law of Rural Area recently, the needs for replacement of a small scale diesel power generation facility which supplied electricity to 10-50 households Remote Islands has been revealed due to high operating and maintenance cost of Diesel Power Generation. Optimization of electric power system for Small Remote Islands must be made considering the economics, reliability and stability as power sources and estimation of total construction cost of those power stations. For its purpose, an assessment of power generation options such as Photovoltaic, Fuel cell, Wind-hybrid was implemented, economic evaluation of power supply shows the Photovoltaic, Fuel Cell for few household's islands and Diesel, Wind-hybrid for more inhabited islands. Power supplied by Diesel shows the best response to increasing electric demand and system reliability even with its lower economic value. Those who are in charge of power planning have to pay attention to system reliability, stability and operating characteristics of candidate's power supply besides its economics.

Power Sharing and Cost Optimization of Hybrid Renewable Energy System for Academic Research Building

  • Singh, Anand;Baredar, Prashant
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1511-1518
    • /
    • 2017
  • Renewable energy hybrid systems look into the process of choosing the finest arrangement of components and their sizing with suitable operation approach to deliver effective, consistent and cost effective energy source. This paper presents hybrid renewable energy system (HRES) solar photovoltaic, downdraft biomass gasifier, and fuel cell based generation system. HRES electrical power to supply the electrical load demand of academic research building sited in $23^{\circ}12^{\prime}N$ latitude and $77^{\circ}24^{\prime}E$ longitude, India. Fuzzy logic programming discover the most effective capital and replacement value on components of HRES. The cause regarding fuzzy logic rule usage on HOMER pro (Hybrid optimization model for multiple energy resources) software program finds the optimum performance of HRES. HRES is designed as well as simulated to average energy demand 56.52 kWh/day with a peak energy demand 4.4 kW. The results shows the fuel cell and battery bank are the most significant modules of the HRES to meet load demand at late night and early morning hours. The total power generation of HRES is 23,794 kWh/year to the supply of the load demand is 20,631 kWh/year with 0% capacity shortage.

Environmental Evaluation for a Photovoltaic-Fuel Cell Hybrid Power System (태양전지-연료전지 복합 전력시스템에 대한 환경평가에 관한 연구)

  • 노경수
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.3
    • /
    • pp.83-88
    • /
    • 1998
  • This paper presents an overview of environmental evaluation for a photovoltaic-fuel cell hybrid power plant through the Ideal Point approach, which is one of multiobjective decision support systems. Its evaluation is carried out in terms of such tow criteria as land requirement for plant construction and lifetime CO2 emissions, and ten compared with conventional fossil fuel power plants. Fuel cell power system has been proven a viable technology to back up severe PV power fluctuations under inclement weather conditions. Fuel cell power generation, containing small land use, is able to alleviate the heavy burden of large surface requirement of PV power plants. In addition, the PV-fuel cell hybrid power system shows a very little potential for lifetime CO2 emissions.

  • PDF

Power control strategies of a DC-coupled hybrid power system for a building microgrid

  • Cho, Jea-Hoon;Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.3
    • /
    • pp.50-64
    • /
    • 2011
  • In this paper, a DC-coupled photovoltaic (PV), fuel cell (FC) and ultracapacitor hybrid power system is studied for building microgrid. In this proposed system, the PV system provides electric energy to the electrolyzer to produce hydrogen for future use and transfer to the load side, if possible. Whenever the PV system cannot completely meet load demands, the FC system provides power to meet the remaining load. The main weak point of the FC system is slow dynamics, because the power slope is limited to prevent fuel starvation problems, improve performance and increase lifetime. A power management and control algorithm is proposed for the hybrid power system by taking into account the characteristics of each power source. The main works of this paper are hybridization of alternate energy sources with FC systems using long and short storage strategies to build an autonomous system with pragmatic design, and a dynamic model proposed for a PV/FC/UC bank hybrid power generation system. A simulation model for the hybrid power system has been developed using Matlab/Simulink, SimPowerSystems and Matlab/Stateflow. The system performance under the different scenarios has been verified by carrying out simulation studies using a practical load demand profile, hybrid power management and control, and real weather data.

A Multiagent-Based Hybrid Power Control and Management of Distributed Power Sources

  • Yoon, Gi-Gab;Hong, Won-Pyo;Lee, Ki-Hong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.8
    • /
    • pp.70-81
    • /
    • 2011
  • In this paper, a multi-agent control system for DC-coupled photovoltaic (PV), fuel cell (FC), ultracapacitor(UC) and battery hybrid power system is studied for commercial buildings & apartment buildings microgrid. In this proposed system, the PV system provides electric energy to the electrolyzer to produce hydrogen for future use and transfer to the load side, if possible. Whenever the PV system cannot completely meet load demands, the FC system provides power to meet the remaining load. A multi-agent system based-power management and control algorithm is proposed for the hybrid power system by taking into account the characteristics of each power source. The main works of this paper are hybridization of alternate energy sources with FC systems using long and short storage strategies to build the multi-agent control system with pragmatic design, and a dynamic model proposed for a PV/FC/UC/battery bank hybrid power generation system. A dynamic simulation model for the hybrid power system has been developed using Matlab/Simulink, SimPowerSystems and Stateflow. Simulation results are also presented to demonstrate the effectiveness of the proposed multi-agent control and management system for building microgrid.

Optimization Process Models of CHP and Renewable Energy Hybrid Systems in CES (구역전기 사업시 CHP와 신재생에너지 하이브리드 시스템의 최적공정 모델)

  • Lee, Seung Jun;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.26 no.2
    • /
    • pp.99-120
    • /
    • 2017
  • In SS branch of Korea District Heating Corporation, Combined Heat & Power power plant with 99MW capacity and 98Gcal / h capacity is operated as a district electricity business. In this region, it is difficult to operate the generator due to the problem of surplus heat treatment between June and September due to the economic recession and the decrease in demand, so it is urgent to develop an economical energy new business model. In this study, we will develop an optimized operation model by introducing a renewable energy hybrid system based on actual operation data of this site. In particular, among renewable energy sources, fuel cell (Fuel Cell) power generation which can generate heat and electricity at the same time with limited location constraints, photovoltaic power generation which is representative renewable energy, ESS (Energy Storage System). HOMER (Hybrid Optimization of Multiple Energy Resources) program was used to select the optimal model. As a result of the economic analysis, 99MW CHP combined cycle power generation is the most economical in terms of net present cost (NPC), but 99MW CHP in terms of carbon emission trading and renewable energy certificate And 5MW fuel cells, and 521kW of solar power to supply electricity and heat than the supply of electricity and heat by 99MW CHP cogeneration power, it was shown that it is economically up to 247.5 billion won. we confirmed the results of the improvement of the zone electricity business condition by introducing the fuel cell and the renewable energy hybrid system as the optimization process model.