Music brings pleasure and relaxation to people. Therefore, it is necessary to classify musical genres based on scenes. Identifying favorite musical genres from massive music data is a time-consuming and laborious task. Recent studies have suggested that machine learning algorithms are effective in distinguishing between various musical genres. However, meeting the actual requirements in terms of accuracy or timeliness is challenging. In this study, a hybrid machine learning model that combines a deep residual auto-encoder (DRAE) and support vector machine (SVM) for musical genre recognition was proposed. Eight manually extracted features from the Mel-frequency cepstral coefficients (MFCC) were employed in the preprocessing stage as the hybrid music data source. During the training stage, DRAE was employed to extract feature maps, which were then used as input for the SVM classifier. The experimental results indicated that this method achieved a 91.54% F1-score and 91.58% top-1 accuracy, outperforming existing approaches. This novel approach leverages deep architecture and conventional machine learning algorithms and provides a new horizon for musical genre classification tasks.
This paper proposes a new type of consequent-pole permanent-magnet (CPPM) machine with stator axial magnetic ring that increases torque capability over a wide speed range and enhances efficiency for the built-in rare-earth permanent magnet synchronous machine used in new energy vehicles. The excitation winding of the CPPM hybrid excitation synchronous machine in the stator is replaced by ferrite magnetic ring to simplify the structure and manufacturing process of the machine. The basic structure and magnetic regulation principle of the proposed machine are introduced and compared with the traditional interior rare-earth permanent magnet synchronous machine and CPPM hybrid excitation synchronous machine. Finally, experimental results of a new type of CPPM synchronous motor prototype with axial magnetic ring are introduced in the paper.
Geomechanics parameters are critical to numerical simulation, stability analysis, design and construction of geotechnical engineering. Due to the limitations of laboratory and in situ experiments, back analysis is widely used in geomechancis and geotechnical engineering. In this study, a hybrid back analysis method, that coupling numerical simulation, response surface (RS) and relevance vector machine (RVM), was proposed and applied to identify geomechanics parameters from hydraulic fracturing. RVM was adapted to approximate complex functional relationships between geomechanics parameters and borehole pressure through coupling with response surface method and numerical method. Artificial bee colony (ABC) algorithm was used to search the geomechanics parameters as optimal method in back analysis. The proposed method was verified by a numerical example. Based on the geomechanics parameters identified by hybrid back analysis, the computed borehole pressure agreed closely with the monitored borehole pressure. It showed that RVM presented well the relationship between geomechanics parameters and borehole pressure, and the proposed method can characterized the geomechanics parameters reasonably. Further, the parameters of hybrid back analysis were analyzed and discussed. It showed that the hybrid back analysis is feasible, effective, robust and has a good global searching performance. The proposed method provides a significant way to identify geomechanics parameters from hydraulic fracturing.
Communications for Statistical Applications and Methods
/
제17권2호
/
pp.141-151
/
2010
Hybrid fuzzy regression analysis is used for integrating randomness and fuzziness into a regression model. Least squares support vector machine(LS-SVM) has been very successful in pattern recognition and function estimation problems for crisp data. This paper proposes a new method to evaluate hybrid fuzzy linear and nonlinear regression models with crisp inputs and fuzzy output using weighted fuzzy arithmetic(WFA) and LS-SVM. LS-SVM allows us to perform fuzzy nonlinear regression analysis by constructing a fuzzy linear regression function in a high dimensional feature space. The proposed method is not computationally expensive since its solution is obtained from a simple linear equation system. In particular, this method is a very attractive approach to modeling nonlinear data, and is nonparametric method in the sense that we do not have to assume the underlying model function for fuzzy nonlinear regression model with crisp inputs and fuzzy output. Experimental results are then presented which indicate the performance of this method.
최근에는 인공지능을 활용하여 악성 URL을 탐지하는 다양한 연구가 진행되고 있으며, 대부분의 연구 결과에서 높은 탐지 성능을 보였다. 그러나 고전 머신러닝을 활용하는 경우 feature를 분석하고 선별해야 하는 추가 비용이 발생하며, 데이터 분석가의 역량에 따라 탐지 성능이 결정되는 이슈가 있다. 본 논문에서는 이러한 이슈를 해결하기 위해 URL lexical feature를 자동으로 추출하는 딥러닝 모델의 일부가 고전 머신러닝 모델에 결합된 형태인 DL-ML Fusion Hybrid 모델을 제안한다. 제안한 모델로 직접 수집한 총 6만 개의 악성과 정상 URL을 학습한 결과 탐지 성능이 최대 23.98%p 향상되었을 뿐만 아니라, 자동화된 feature engineering을 통해 효율적인 기계학습이 가능하였다.
과거 주가 데이터와 금융 관련 빅 데이터를 사용해 머신러닝 기법으로 주식시장을 예측하는 연구는 다양하게 있어 왔지만, HTS와 MTS를 통해 거래가 가능한 주가지수 연동 ETF가 생기면서 주가지수를 예측하는 연구가 최근 주목받고 있다. 본 논문에서는 KOSPI 연동 ETF를 거래할 목적으로 KOSPI의 상승 예측을 위한 머신러닝 모델과 하락예측을 위한 모델을 각각 구현한다. 이들 모델은 매개변수의 그리드 탐색을 통해 최적화 된다. 또한 정밀도를 개선해 ETF 거래 수익률을 높일 수 있도록 개별 모델들을 조합한 하이브리드 머신러닝 모델을 제안한다. 예측 모델의 성능은 정확도와 ETF 거래 수익률에 큰 영향을 미치는 정밀도로 평가된다. 하이브리드 상승 예측 모델의 정확도와 정밀도는 72.1 %와 63.8 %이고 하락 예측 모델은 79.8 %와 64.3 %이다. 하이브리드 하락 예측 모델에서 정밀도는 개별 모델보다 최소 14.3 %, 최대 20.5 % 개선되었다. 테스트 기간에 하이브리드 모델은 하락에서 10.49 %, 상승에서 25.91 %의 ETF 거래 수익률을 보였다. 인버스×2와 레버리지 ETF로 거래하면 수익률을 1.5 ~ 2배로 높일 수 있다. 하락예측 머신러닝 모델에 대한 추가 연구로 수익률을 더 높일 수 있을 것으로 기대한다.
This research comparatively studies three kinds of flux regulation methods, namely, stored capacitor discharge pulse (SCDP), constant current source pulse (CCSP), and quantitative flux regulation pulse (QFRP), which are used for hybrid permanent magnet (PM) axial field flux-switching memory machines (HPM-AFFSMMs). Through an analysis of the operation principle and the series hybrid PM flux regulation mechanism of the objective machine, the circuit topologies and flux regulation process of these flux regulation methods are addressed in detail. On the basis of a simulation, the flux regulation characteristics of the researched machine during the magnetization and demagnetization processes are comparatively evaluated. Then, machine performance, including back EMF, direct and quadrature axis inductances, and magnetization and demagnetization characteristics, is quantitatively investigated. Results show that the QFRP enables the HPM-AFFSMM to achieve a less harmonic component of back EMF by approximately 7.28% and 7.97% at the magnetization and demagnetization states, respectively, and a more complete magnetization process than the SCDP and CCSP.
연판정 검출기는 시스템의 비트오류율과 처리율을 높이기 위해서 많은 순방향 에러정정(FEC) 방식과 자동반복요구(ARQ) 방식에서 사용되고 있다. 또한 FEC 방식과 ARQ 방식을 결합한 복합-ARQ 방식은 시스템의 전체적인 성능을 높이기 위해 매우 효율적인 방식이다. 본 논문에서는 연판정 검출기를 사용하고 채널부호로는 1차 Reed-Muller 부호를 사용한 복합-ARQ 방식을 제시한다. Reed-Muller 부호는 다른 부호에 비하여 매우 간단하면서 빠른 Green machine 복호기를 사용할 수 있는 장점을 가지고 있다. 시스템의 성능을 평가하기 위하여 비트오류율과 처리율을 구하고 다른 시스템과 비교하였다. 그 결과 제안된 시스템이 복잡도면에서의 큰 손실없이 성능면에서 높은 개선을 보임을 알 수 있었다.
Machine tools are the cores of industrial development in recent period. It is difficult to develop a system which can do cutting and grinding process in the one system. Hybrid Vertical Grinding System is capable of processing in a single apparatus cutting or grinding. The modal analysis and structural analysis for the development of Hybrid Vertical Grinding System is the first time of domestic work. This paper describes the technologies of Hybrid Vertical grinding machine and intend to introduce the studies in the development of the Hybrid Vertical Grinding System.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.