• Title/Summary/Keyword: Hybrid Kernel Function

Search Result 16, Processing Time 0.023 seconds

Study on Waxy Corn IX. Amylogram Properties, Antioxidant Activity and Texture Analysis on the Developed Waxy Corn Hybrids (찰옥수수 연구 IX. 찰옥수수 교잡종의 아밀로그램 특성, 항산화성 및 식미관련 종실의 물성)

  • Bok, Tae-Gyu;Lee, Moon-Sub;Choi, Yun-Pyo;Cha, Hui-Jung;Baek, Seoung-U;Jo, Yang-Hee;Lee, Hee-Bong
    • Korean Journal of Breeding Science
    • /
    • v.43 no.1
    • /
    • pp.62-67
    • /
    • 2011
  • This study was carried out to gain basic informations about amylogram, antioxidant activity function and physicochemical properties for kernel of the newly developed waxy corn hybrids. The used materials were produced in 2008 and cultivated at breeding farm of CNU in 2009. From amylogram analysis, peak and minimum viscosity of the used hybrids were appeared in CNU08H-71 and CNU08H-69 hybrid, respectively. DPPH free radical scavenging effect marked as election donating ability was highly appeared in CNU08H-15 and CNU08H-69 hybrid, while CNU08H-h102 hybrid was the lowest. Hardness of kernel was highly appeared in CNU08H-35 hybrid, and chewiness and gumminess were also the highest in this hybrid, but those of CNU08H-h105 hybrid were the lowest. In these facts, we confirmed that the used hybrids were very different among traits related to amylogram, functions and table qualities. Accordingly, development of the new waxy corn hybrid will be profitable to select and develop as a crossing combination including many excellent traits.

Feature reduction for classifying high dimensional data sets using support vector machine (고차원 데이터의 분류를 위한 서포트 벡터 머신을 이용한 피처 감소 기법)

  • Ko, Seok-Ha;Lee, Hyun-Ju
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.877-878
    • /
    • 2008
  • We suggest a feature reduction method to classify mouse function data sets, which integrate several biological data sets represented as high dimensional vectors. To increase classification accuracy and decrease computational overhead, it is important to reduce the dimension of features. To do this, we employed Hybrid Huberized Support Vector Machine with kernels used for a kernel logistic regression method. When compared to support vector machine, this a pproach shows the better accuracy with useful features for each mouse function.

  • PDF

A Study on Optimization of Perovskite Solar Cell Light Absorption Layer Thin Film Based on Machine Learning (머신러닝 기반 페로브스카이트 태양전지 광흡수층 박막 최적화를 위한 연구)

  • Ha, Jae-jun;Lee, Jun-hyuk;Oh, Ju-young;Lee, Dong-geun
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.7
    • /
    • pp.55-62
    • /
    • 2022
  • The perovskite solar cell is an active part of research in renewable energy fields such as solar energy, wind, hydroelectric power, marine energy, bioenergy, and hydrogen energy to replace fossil fuels such as oil, coal, and natural gas, which will gradually disappear as power demand increases due to the increase in use of the Internet of Things and Virtual environments due to the 4th industrial revolution. The perovskite solar cell is a solar cell device using an organic-inorganic hybrid material having a perovskite structure, and has advantages of replacing existing silicon solar cells with high efficiency, low cost solutions, and low temperature processes. In order to optimize the light absorption layer thin film predicted by the existing empirical method, reliability must be verified through device characteristics evaluation. However, since it costs a lot to evaluate the characteristics of the light-absorbing layer thin film device, the number of tests is limited. In order to solve this problem, the development and applicability of a clear and valid model using machine learning or artificial intelligence model as an auxiliary means for optimizing the light absorption layer thin film are considered infinite. In this study, to estimate the light absorption layer thin-film optimization of perovskite solar cells, the regression models of the support vector machine's linear kernel, R.B.F kernel, polynomial kernel, and sigmoid kernel were compared to verify the accuracy difference for each kernel function.

Hydrological Forecasting Based on Hybrid Neural Networks in a Small Watershed (중소하천유역에서 Hybrid Neural Networks에 의한 수문학적 예측)

  • Kim, Seong-Won;Lee, Sun-Tak;Jo, Jeong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.4
    • /
    • pp.303-316
    • /
    • 2001
  • In this study, Radial Basis Function(RBF) Neural Networks Model, a kind of Hybrid Neural Networks was applied to hydrological forecasting in a small watershed. RBF Neural Networks Model has four kinds of parameters in it and consists of unsupervised and supervised training patterns. And Gaussian Kernel Function(GKF) was used among many kinds of Radial Basis Functions(RBFs). K-Means clustering algorithm was applied to optimize centers and widths which ate the parameters of GKF. The parameters of RBF Neural Networks Model such as centers, widths weights and biases were determined by the training procedures of RBF Neural Networks Model. And, with these parameters the validation procedures of RBF Neural Networks Model were carried out. RBF Neural Networks Model was applied to Wi-Stream basin which is one of the IHP Representative basins in South Korea. 10 rainfall events were selected for training and validation of RBF Neural Networks Model. The results of RBF Neural Networks Model were compared with those of Elman Neural Networks(ENN) Model. ENN Model is composed of One Step Secant BackPropagation(OSSBP) and Resilient BackPropagation(RBP) algorithms. RBF Neural Networks shows better results than ENN Model. RBF Neural Networks Model spent less time for the training of model and can be easily used by the hydrologists with little background knowledge of RBF Neural Networks Model.

  • PDF

Malware Detection Via Hybrid Analysis for API Calls (API call의 단계별 복합분석을 통한 악성코드 탐지)

  • Kang, Tae-Woo;Cho, Jae-Ik;Chung, Man-Hyun;Moon, Jong-Sub
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.17 no.6
    • /
    • pp.89-98
    • /
    • 2007
  • We have come a long way in the information age. Thanks to the advancement of such technologies as the internet, we have discovered new ways to convey information on a broader scope. However, negative aspects exist as is with anything else. These may include invasion of privacy over the web, or identity theft over the internet. What is more alarming is that malwares so called 'maliciouscodes' are rapidly spreading. Its intent is very destructive which can result in hacking, phishing and as aforementioned, one of the most disturbing problems on the net, invasion of privacy. This thesis describes the technology of how you can effectively analyze and detect these kind of malicious codes. We propose sequencial hybrid analysis for API calls that are hooked inside user-mode and kernel-level of Windows. This research explains how we can cope with malicious code more efficiently by abstracting malicious function signature and hiding attribute.

Optimization of Support Vector Machines for Financial Forecasting (재무예측을 위한 Support Vector Machine의 최적화)

  • Kim, Kyoung-Jae;Ahn, Hyun-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.241-254
    • /
    • 2011
  • Financial time-series forecasting is one of the most important issues because it is essential for the risk management of financial institutions. Therefore, researchers have tried to forecast financial time-series using various data mining techniques such as regression, artificial neural networks, decision trees, k-nearest neighbor etc. Recently, support vector machines (SVMs) are popularly applied to this research area because they have advantages that they don't require huge training data and have low possibility of overfitting. However, a user must determine several design factors by heuristics in order to use SVM. For example, the selection of appropriate kernel function and its parameters and proper feature subset selection are major design factors of SVM. Other than these factors, the proper selection of instance subset may also improve the forecasting performance of SVM by eliminating irrelevant and distorting training instances. Nonetheless, there have been few studies that have applied instance selection to SVM, especially in the domain of stock market prediction. Instance selection tries to choose proper instance subsets from original training data. It may be considered as a method of knowledge refinement and it maintains the instance-base. This study proposes the novel instance selection algorithm for SVMs. The proposed technique in this study uses genetic algorithm (GA) to optimize instance selection process with parameter optimization simultaneously. We call the model as ISVM (SVM with Instance selection) in this study. Experiments on stock market data are implemented using ISVM. In this study, the GA searches for optimal or near-optimal values of kernel parameters and relevant instances for SVMs. This study needs two sets of parameters in chromosomes in GA setting : The codes for kernel parameters and for instance selection. For the controlling parameters of the GA search, the population size is set at 50 organisms and the value of the crossover rate is set at 0.7 while the mutation rate is 0.1. As the stopping condition, 50 generations are permitted. The application data used in this study consists of technical indicators and the direction of change in the daily Korea stock price index (KOSPI). The total number of samples is 2218 trading days. We separate the whole data into three subsets as training, test, hold-out data set. The number of data in each subset is 1056, 581, 581 respectively. This study compares ISVM to several comparative models including logistic regression (logit), backpropagation neural networks (ANN), nearest neighbor (1-NN), conventional SVM (SVM) and SVM with the optimized parameters (PSVM). In especial, PSVM uses optimized kernel parameters by the genetic algorithm. The experimental results show that ISVM outperforms 1-NN by 15.32%, ANN by 6.89%, Logit and SVM by 5.34%, and PSVM by 4.82% for the holdout data. For ISVM, only 556 data from 1056 original training data are used to produce the result. In addition, the two-sample test for proportions is used to examine whether ISVM significantly outperforms other comparative models. The results indicate that ISVM outperforms ANN and 1-NN at the 1% statistical significance level. In addition, ISVM performs better than Logit, SVM and PSVM at the 5% statistical significance level.