• Title/Summary/Keyword: Hybrid Interpolation

Search Result 65, Processing Time 0.025 seconds

Static Analysis of Continuous Fiber-Reinforced Laminated Beams Based on Hybrid-Mixed Formulation (혼합 정식화를 이용한 섬유 강화 적층보의 변형해석)

  • Kim, J.G.;Lee, J.K.
    • Journal of Power System Engineering
    • /
    • v.15 no.6
    • /
    • pp.47-52
    • /
    • 2011
  • In this study, an accurate 2-noded hybrid-mixed element for continuous fiber-reinforced laminated beams is newly proposed. The present element including the effect of shear deformation is based on Hellinger-Reissner variational principle, and introduces additional consistent node less degrees for displacement field interpolation in order to enhance the numerical performance. The micromechanical and lamination theory are employed in the finite element description to consider the effects of the laminate stacking sequences, material orthotropy, and fiber volume fraction, etc. The element stiffness matrix can be explicitly derived through the stationary condition and static condensation using Mathematica program. Several numerical examples confirm the accuracy of the present hybrid-mixed element and also show in detail the effects of the continuous fiber volume fraction, stacking sequences and boundary condition on the bending behavior of laminated beams.

An assumed-stress hybrid element for modeling of plates with shear deformations on elastic foundation

  • Darilmaz, Kutlu
    • Structural Engineering and Mechanics
    • /
    • v.33 no.5
    • /
    • pp.573-588
    • /
    • 2009
  • In this paper a four-node hybrid stress element is proposed for analysing arbitrarily shaped plates on a two parameter elastic foundation. The element is developed by combining a hybrid plate stress element and a soil element. The formulation is based on Hellinger-Reissner variational principle in which both inter element compatible boundary displacement and equilibrated stress fields for the plate as well as the foundation are chosen separately. This formulation also allows a low order polynomial interpolation functions. Numerical examples are presented to show that the validity and efficiency of the present element for the plate analysis resting on an elastic foundation. In these examples the effect of soil depth, interaction between closed plates on soil parameters, comparison with Winkler hypothesis is investigated.

Higher-order assumed stress quadrilateral element for the Mindlin plate bending problem

  • Li, Tan;Qi, Zhaohui;Ma, Xu;Chen, Wanji
    • Structural Engineering and Mechanics
    • /
    • v.54 no.3
    • /
    • pp.393-417
    • /
    • 2015
  • In this paper an 8-node quadrilateral assumed stress hybrid Mindlin plate element with $39{\beta}$ is presented. The formulation is based on complementary energy principle. The proposed element is free of shear locking and is capable of passing all the patch tests, especially the non-zero constant shear enhanced patch test. To accomplish this purpose, special attention is devoted to selecting boundary displacement interpolation and stress approximation in domain. The arbitrary order Timoshenko beam function is successfully used to derive the boundary displacement interpolation. According to the equilibrium equations, an appropriate stress approximation is rationally derived. Particularly, in order to improve element's accuracy, the assumed stress field is derived by employing $39{\beta}$ rather than conventional $21{\beta}$. The resulting element can be adopted to analyze both moderately thick and thin plates, and the convergence for the very thin case can be ensured theoretically. Excellent element performance is demonstrated by a wide of experimental evaluations.

Hybrid Super-Resolution Algorithm Robust to Cut-Change (컷 전환에 적응적인 혼합형 초고해상도 기법)

  • Kwon, Soon-Chan;Lim, Jong-Myeong;Yoo, Jisang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.7
    • /
    • pp.1672-1686
    • /
    • 2013
  • In this paper, we propose a hybrid super-resolution algorithm robust to cut-change. Existing single-frame based super-resolution algorithms are usually fast, but quantity of information for interpolation is limited. Although the existing multi-frame based super-resolution algorithms generally robust to this problem, the performance of algorithm strongly depends on motions of input video. Furthemore at boundary of cut, applying of the algorithm is limited. In the proposed method, we detect a define boundary of cut using cut-detection algorithm. Then we adaptively apply a single-frame based super-resolution method to detected cut. Additionally, we propose algorithms of normalizing motion vector and analyzing pattern of edge to solve various problems of existing super-resolution algorithms. The experimental results show that the proposed algorithm has better performance than other conventional interpolation methods.

Hybrid Particle Image Velocimetry Based on Affine Transformation (어파인변환 기반 하이브리드 PIV)

  • Doh, Deog-Hee;Cho, Gyong-Rae;Lee, Jae-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.6
    • /
    • pp.603-608
    • /
    • 2011
  • Since PTV (particle tracking velocimetry) provides velocity vectors by tracking each particle in a fluid flow, it has significant benefits when used for nano- and bio-fluid flows. However, PTV has only been used for limited flow fields because interpolation data loss is inevitable in PTV in principle. In this paper, a hybrid particle image velocimetry (PIV) algorithm that eliminates interpolation data loss was constructed by using an affine transformation. For the evaluation of the performance of the constructed hybrid PIV algorithm, an artificial image test was performed using Green-Taylor vortex data. The constructed algorithm was tested on experimental images of the wake flow (Re = 5,300) of a rectangular body ($6cm\;{\times}3cm$), and was demonstrated to provide excellent results.

3D Reconstruction Method for 3D Engraving Systems (3D 조각가공 시스템을 위한 3 차원 복원 방법)

  • Lee, Won-Seck;Chung, Sung-Chong
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1204-1209
    • /
    • 2008
  • Design is important in the IT, digital appliance, and auto industries. Aesthetic and art images are being applied for better design satisfaction of the products. Various artistic image patterns are used to satisfy demand of design, but it takes much lead-time and effort to implement them for making dies and molds. In this paper, a hybrid reverse engineering method generating accurate 3D engraving models from 2D art images is proposed through image processing, 3D reconstruction, and NURBS interpolation methods. In order to generate the 3D model from the 2D artistic image, cloud points with z-depth are extracted according to intensity values of the image. An adaptive median filter and harmonic filter are used to obtain the intensity values accurately. NURBS surfaces are generated through the interpolation of the cloud points. Performance of the developed system is to be confirmed through the realization of Mona Lisa and Golden Gate Bridge.

  • PDF

Numerical Simulation of a Viscous Flow Field Around a Deforming Foil Using the Hybrid Cartesian/Immersed Boundary Method (Hybrid Cartesian/Immersed Boundary 법을 이용한 2차원 변형날개 주위 점성유동 해석)

  • Shin, Sang-Mook;Kim, Hyoung-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.5 s.149
    • /
    • pp.538-549
    • /
    • 2006
  • A code is developed to simulate a viscous flow field around a deformable body using the hybrid Cartesian/immersed boundary method. In this method, the immersed boundary(IB) nodes are defined near the body boundary then velocities at the IB nodes are reconstructed based on the interpolation along the normal direction to the body surface. A new method is suggested to define the IB nodes so that a closed fluid domain is guaranteed by a set of IB nodes and the method is applicable to a zero-thickness body such as a sail. To validate the developed code, the vorticity fields are compared with other recent calculations where a cylinder orbits and moves into its own wake. It is shown the code can handle a sharp trailing edge at Reynolds number of $10^5$ under moderate requirements on girds. Finally the developed code is applied to simulate the vortex shedding behind a deforming foil with flapping tail like a fish. It is shown that the acceleration of fluids near the flapping tail contributes to the generation of the thrust for propulsion.

Two dimensional filter design for HDTV (고화질 텔레비젼용 이차원 필터 설계)

  • 박주성;윤병우;제영호;양진영;박종철;심영석
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.10
    • /
    • pp.152-160
    • /
    • 1994
  • Two dimensional interpolation filter for HD-MAC is designed with 1.0 .mu.m CMOS standard cells and verified by logic simulation. The interpolator uses FMH(FIR-Median Hybrid) filter. The median filter, which is the most complicated part of FMH filtre, is simply implemented by modifying Hadian-Sobel algorithm. the filter generates accurately the missed pixel data of luminance and chrominance with the worst case simulation condition at 27MHz clock rates.

  • PDF

Unstructured Quadrilateral Surface Grid Generation and Cell Size Control

  • Kim, Byoung-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.386-389
    • /
    • 2008
  • In this paper grid generation of unstructured quadrilateral surface grids is described. The current approach uses conventional Advancing Front Method which is used to generate unstructured triangular grids. Grid cell size control is done by using closeness-based global interpolation method controlled by pre-described control elements. Algorithm and procedure for quadrilateral grid generation using AFM method and cell size control method are described. Examples of quadrilateral grid generation are shown, and difficulties and problems related to the current approach are also discussed.

  • PDF

Unstructured Quadrilateral Surface Grid Generation and Cell Size Control

  • Kim, Byoung-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.386-389
    • /
    • 2008
  • In this paper grid generation of unstructured quadrilateral surface grids is described. The current approach uses conventional Advancing Front Method which is used to generate unstructured triangular grids. Grid cell size control is done by using closeness-based global interpolation method controlled by pre-described control elements. Algorithm and procedure for quadrilateral grid generation using AFM method and cell size control method are described. Examples of quadrilateral grid generation are shown, and difficulties and problems related to the current approach are also discussed.

  • PDF