• 제목/요약/키워드: Hybrid Intelligent Method

검색결과 186건 처리시간 0.022초

휴먼-로봇 인터액션을 위한 하이브리드 스켈레톤 특징점 추출 (Feature Extraction Based on Hybrid Skeleton for Human-Robot Interaction)

  • 주영훈;소제윤
    • 제어로봇시스템학회논문지
    • /
    • 제14권2호
    • /
    • pp.178-183
    • /
    • 2008
  • Human motion analysis is researched as a new method for human-robot interaction (HRI) because it concerns with the key techniques of HRI such as motion tracking and pose recognition. To analysis human motion, extracting features of human body from sequential images plays an important role. After finding the silhouette of human body from the sequential images obtained by CCD color camera, the skeleton model is frequently used in order to represent the human motion. In this paper, using the silhouette of human body, we propose the feature extraction method based on hybrid skeleton for detecting human motion. Finally, we show the effectiveness and feasibility of the proposed method through some experiments.

강인 지능형 디지털 재설계 방안 연구 (Robust Intelligent Digital Redesign)

  • 성화창;주영훈;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.220-222
    • /
    • 2006
  • This paper presents intelligent digital redesign method of global approach for hybrid state space fuzzy-model-based controllers. For effectiveness and stabilization of continuous-time uncertain nonlinear systems under discrete-time controller, Takagi-Sugeno(TS) fuzzy model is used to represent the complex system. And global approach design problems viewed as a convex optimization problem that we minimize the error of the norm bounds between nonlinearly interpolated lineal operators to be matched. Also, by using the bilinear and inverse bilinear approximation method, we analyzed nonlinear system's uncertain parts more precisely. When a sampling period is sufficiently small, the conversion of a continuous-time structured uncertain nonlinear system to an equivalent discrete-time system have proper reason. Sufficiently conditions for the global state-matching of the digitally controlled system are formulated in terms of linear matrix inequalities (LMIs). Finally, a T-S fuzzy model for the chaotic Lorentz system is used as an example to guarantee the stability and effectiveness of the proposed method.

  • PDF

하이브리드 동정 알고리즘에 의한 최적 퍼지 시스템에 관한 연구 (A Study on Optimal fuzzy Systems by Means of Hybrid Identification Algorithm)

  • 오성권
    • 한국지능시스템학회논문지
    • /
    • 제9권5호
    • /
    • pp.555-565
    • /
    • 1999
  • 복잡하고 비선형적인 시스템의 규칙베이스 퍼지모델링을 위하여 퍼지시스템의 최적 동정알고리즘을 연구한다. 비선형 시스템은 퍼지모델의 입력변수와 퍼지 입력공간 분할에 의한 구조동정과 파라미터 동정을 통해 표현된다. 본 논문에서 규칙베이스 퍼지모델링은 비선형 시스템을 위해 퍼지추론방법과 두 종류의 최적화 이론의 결합에 의한 하이브리드 구졸를 이용하여 시스템 구조와 파라미터동정을 수행한다. 퍼지모델의 추론방법은 간략추론 및 선형추론에 의한다. 제안된 하이브리드 최적 동정 알고리즘은 유전자 알고리즘과 개선된 콤플렉스 방법을 이용한다. 여기서 유전자 알고리즘은 전반부 퍼지규칙의 멤버쉽함수의 초기 파라미터들을 결정하기 위해 사용되고 강력한 자동동조 알고리즘인 개선된 콤플렉스 방법은 정교한 파라미터들을 얻기 위해 수행된다. 따라서 최적 퍼지모델을 위해 전반부 파라미터 동정에는 하이브리드형의 최적 알고리즘을 이용하고 후반부 동정에는 최소자승법을 이용한다. 또한 학습과 테스트 데이터에 의해 생성된 퍼지모델의 성능결과 사이의 상호균형을 얻기 위해 하중계수를 가지는 합성 성능지수를 제안한다. 제안된 모델의 성능평가를 위해 두가지 수치적 예를이용한다.

  • PDF

PV 시스템의 최적 배치 문제를 위한 이산 PSO에서의 규칙 기반 하이브리드 이산화 (Rule-based Hybrid Discretization of Discrete Particle Swarm Optimization for Optimal PV System Allocation)

  • 송화창;고재환;최병욱
    • 한국지능시스템학회논문지
    • /
    • 제21권6호
    • /
    • pp.792-797
    • /
    • 2011
  • 본 논문은 배전망에서의 PV (photovoltaic) 발전 시스템의 최적 배치 문제를 이산 입자 군집 최적화 (DPSO, discrete particle swarm optimization)를 이용하여 해를 구할 때 DPSO에 포함되어야 하는 이산화 단계를 위한 하이브리드 이산화 기법의 적용에 대하여 논한다. 이를 위해 PSO 반복단계에서 목적 함수 값과 최적화 속도를 입력 파라미터로 하는 규칙 기반 전문가 시스템을 제안하고 이산 변수를 포함하여 표현되는 PV 시스템 배치 문제의 최적해를 구하는데 적용하였다. 다수준 이산화를 위하여 간단한 라운딩과 sigmoid 함수를 이용한 3단계 및 5단계 이산화 기법을 하이브리드 형태로 적용하였다. 규칙 기반 전문가 시스템을 적용하여 각 PSO 과정에서 적절한 이산화 기법을 선택함으로써 기존의 DPSO보다 좋은 성능의 최적화가 가능하도록 하였다.

차륜형 이동로봇의 자율 벽면-주행을 위한 하이브리드 제어 (Autonomous Wall-Following of Wheeled Mobile Robots using Hybrid Control Approach)

  • 임미섭;임준홍;오상록
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 G
    • /
    • pp.3105-3107
    • /
    • 1999
  • In this paper, we propose a new approach to autonomous wall-following of wheeled mobile robots using hybrid control system. The hybrid control approach IS introduced to the motion control of nonholonomic mobile robots in the Indoor navigation problems. In hybrid control architecture, the discrete states are defined by the user-defined constraints, and the reference motion commands are specified In the abstracted motions. The hybrid control system applied to motion planning and autonomous navigation with obstacle avoidance In indoor navigation problem. Simulation results show that it is an effective method for the autonomous navigation in indoor environments.

  • PDF

실내 환경에서의 로봇 자율주행을 위한 천장영상으로부터의 이종 특징점을 이용한 단일비전 기반 자기 위치 추정 시스템 (Monocular Vision Based Localization System using Hybrid Features from Ceiling Images for Robot Navigation in an Indoor Environment)

  • 강정원;방석원;크리스토퍼 쥐 애키슨;홍영진;서진호;이정우;정명진
    • 로봇학회논문지
    • /
    • 제6권3호
    • /
    • pp.197-209
    • /
    • 2011
  • This paper presents a localization system using ceiling images in a large indoor environment. For a system with low cost and complexity, we propose a single camera based system that utilizes ceiling images acquired from a camera installed to point upwards. For reliable operation, we propose a method using hybrid features which include natural landmarks in a natural scene and artificial landmarks observable in an infrared ray domain. Compared with previous works utilizing only infrared based features, our method reduces the required number of artificial features as we exploit both natural and artificial features. In addition, compared with previous works using only natural scene, our method has an advantage in the convergence speed and robustness as an observation of an artificial feature provides a crucial clue for robot pose estimation. In an experiment with challenging situations in a real environment, our method was performed impressively in terms of the robustness and accuracy. To our knowledge, our method is the first ceiling vision based localization method using features from both visible and infrared rays domains. Our system can be easily utilized with a variety of service robot applications in a large indoor environment.

진화 연산의 성능 개선을 위한 하이브리드 방법 (A Hybrid Method for Improvement of Evolutionary Computation)

  • 정진기;오세영
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 춘계학술대회 및 임시총회
    • /
    • pp.159-165
    • /
    • 2002
  • 진화연산에는 교배, 돌연변이, 경쟁, 선택이 있다. 이러한 과정 중에서 선택은 새로운 개체를 생산하지는 않지만, 모든 해중에서 최적의 해가 될만한 해는 선택하고, 그러지 않은 해는 버리는 판단의 역할을 한다. 따라서 아무리 좋은 해를 만들었다고 해도, 취사 선택을 잘못하면, 최적의 해를 찾지 못하거나, 또 많은 시간이 소요되게 된다. 따라서 본 논문에서는 stochastic한 성질을 갖고 있는 Tournament selection에 Local selection개념을 도입하여, 지역 해에서 벗어나 전역 해를 찾는데, 개선이 될 수 있도록 하였고 Fast Evolutionary Programming의 mutation과정을 개선하고, Genetic Algorithm의 연산자인 crossover와 mutation을 도입하여 Parallel search로 지역 해에서 벗어나 전역 해를 찾는 하이브리드 알고리즘을 제안하고자 한다.

  • PDF

GA기반 TSK 퍼지 분류기의 설계 및 응용 (The Design of GA-based TSK Fuzzy Classifier and Its application)

  • 곽근창;김승석;유정웅;전명근
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 추계학술대회 학술발표 논문집
    • /
    • pp.233-236
    • /
    • 2001
  • In this paper, we propose a TSK-type fuzzy classifier using PCA(Principal Component Analysis), FCM(Fuzzy C-Means) clustering and hybrid GA(genetic algorithm). First, input data is transformed to reduce correlation among the data components by PCA. FCM clustering is applied to obtain a initial TSK-type fuzzy classifier. Parameter identification is performed by AGA(Adaptive Genetic Algorithm) and RLSE(Recursive Least Square Estimate). we applied the proposed method to Iris data classification problems and obtained a better performance than previous works.

  • PDF

진화 연산의 성능 개선을 위한 하이브리드 방법 (A Hybrid Method for Improvement of Evolutionary Computation)

  • 정진기;오세영
    • 한국지능시스템학회논문지
    • /
    • 제12권4호
    • /
    • pp.317-322
    • /
    • 2002
  • The major operations of Evolutionary Computation include crossover, mutation, competition and selection. Although selection does not create new individuals like crossover or mutation, a poor selection mechanism may lead to problems such as taking a long time to reach an optimal solution or even not finding it at all. In view of this, this paper proposes a hybrid Evolutionary Programming (EP) algorithm that exhibits a strong capability to move toward the global optimum even when stuck at a local minimum using a synergistic combination of the following three basic ideas. First, a "local selection" technique is used in conjunction with the normal tournament selection to help escape from a local minimum. Second, the mutation step has been improved with respect to the Fast Evolutionary Programming technique previously developed in our research group. Finally, the crossover and mutation operations of the Genetic Algorithm have been added as a parallel independent branch of the search operation of an EP to enhance search diversity.

A Hybrid Genetic Algorithm for K-Means Clustering

  • Jun, Sung-Hae;Han, Jin-Woo;Park, Minjae;Oh, Kyung-Whan
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.330-333
    • /
    • 2003
  • Initial cluster size for clustering of partitioning methods is very important to the clustering result. In K-means algorithm, the result of cluster analysis becomes different with optimal cluster size K. Usually, the initial cluster size is determined by prior and subjective information. Sometimes this may not be optimal. Now, more objective method is needed to solve this problem. In our research, we propose a hybrid genetic algorithm, a tree induction based evolution algorithm, for determination of optimal cluster size. Initial population of this algorithm is determined by the number of terminal nodes of tree induction. From the initial population based on decision tree, our optimal cluster size is generated. The fitness function of ours is defined an inverse of dissimilarity measure. And the bagging approach is used for saying computational time cost.

  • PDF