• Title/Summary/Keyword: Hybrid Intelligent Algorithm

Search Result 190, Processing Time 0.026 seconds

Practical Swarm Optimization based Fault-Tolerance Algorithm for the Internet of Things

  • Luo, Shiliang;Cheng, Lianglun;Ren, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1178-1191
    • /
    • 2014
  • The fault-tolerance routing problem is one of the most important issues in the application of the Internet of Things, and has been attracting growing research interests. In order to maintain the communication paths from source sensors to the macronodes, we present a hybrid routing scheme and model, in which alternate paths are created once the previous routing is broken. Then, we propose an improved efficient and intelligent fault-tolerance algorithm (IEIFTA) to provide the fast routing recovery and reconstruct the network topology for path failure in the Internet of Things. In the IEIFTA, mutation direction of the particle is determined by multi-swarm evolution equation, and its diversity is improved by the immune mechanism, which can improve the ability of global search and improve the converging rate of the algorithm. The simulation results indicate that the IEIFTA-based fault-tolerance algorithm outperforms the EARQ algorithm and the SPSOA algorithm due to its ability of fast routing recovery mechanism and prolonging the lifetime of the Internet of Things.

Sigma-Pi$_{t}$ Cascaded Hybrid Neural Network and its Application to the Spirals and Sonar Pattern Classification Problems

  • Iyoda, Eduardo-Masato;Hajime Nobuhara;Kazuhiko Kawamoto;Shin′ichi Yoshida;Kaoru Hirota
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.158-161
    • /
    • 2003
  • A cascade structured neural network called Sigma-Pi$_{t}$ Cascaded Hybrid Neural Network ($\sigma$$\pi$$_{t}$-CHNN) is Proposed. It is an extended version of the Sigma-Pi Cascaded extended Hybrid Neural Network ($\sigma$$\pi$-CHNN), where the classical multiplicative neuron ($\pi$-neuron) is replaced by the translated multiplicative ($\pi$$_{t}$-neuron) model. The learning algorithm of $\sigma$$\pi$$_{t}$-CHNN is composed of an evolutionary programming method, responsible for determining the network architecture, and of a Levenberg-Marquadt algorithm, responsible for tuning the weights of the network. The $\sigma$$\pi$$_{t}$-CHNN is evaluated in 2 pattern classification problems: the 2 spirals and the sonar problems. In the 2 spirals problem, $\sigma$$\pi$$_{t}$-CHNN can generate neural networks with 10% less hidden neurons than that in previous neural models. In the sonar problem, $\sigma$$\pi$$_{t}$-CHNN can find the optimal solution for the problem i.e., a network with no hidden neurons. These results confirm the expanded information processing capabilities of $\sigma$$\pi$$_{t}$-CHNN, when compared to previous neural network models. network models.

  • PDF

3-Dimensional Free Form Design Using an ASMOD (ASMOD를 이용한 3차원 자유 형상 설계)

  • 김현철;김수영;이창호
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.5
    • /
    • pp.45-50
    • /
    • 1998
  • This paper presents the process generating the 3-dimensional free f o r m hull form by using an ASMOD(Adaptive Spline Modeling of Observation Data) and a hybrid curve approximation. For example, we apply an ASMOD to the generation of a SAC(Sectiona1 Area Curve) in an initial hull form design. That is, we define SACS of real ships as B-spline curves by a hybrid curve approximation (which is the combination method of a B-spline fitting method and a genetic algorithm) and accumulate a database of control points. Then we let ASMOD learn from the correlation of principal dimensions with control points and make the ASMOD model for SAC generation. Identically, we apply an ASMOD to the generation of other hull form characteristic curves - design waterline curve, bottom tangent line, center profile line. Conclus~onally we can generate a design hull form from these hull form characteristic curves.

  • PDF

Robust Stability Analysis of Hybrid Magnetic Bearing System (하이브리드 자기베어링 시스템의 강인 안정도 해석)

  • Sung, Hwa-Chang;Park, Jin-Bae;Tark, Myung-Hwan;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.372-377
    • /
    • 2011
  • This paper propose the robust stability algorithm for controlling a hybrid magnetic bearing system. The control object in the magnetic bearing system enables the rotor to rotate without any physical contact by using magnetic force. Generally, the system dynamics of the magnetic bearing system has severe nonlinearity and uncertainty so that it is not easy to obtain the control objective. For solving these problems, we propose the fuzzy modelling and robust control algorithm for hybrind magnetic bearing system. The sufficient conditions for robust controller are obtained in terms of solutions to linear matrix inequalities (LMIs). Simulation results for HMB are demonstrated to visualize the feasibility of the proposed method.

Automatic Switching of Clustering Methods based on Fuzzy Inference in Bibliographic Big Data Retrieval System

  • Zolkepli, Maslina;Dong, Fangyan;Hirota, Kaoru
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.256-267
    • /
    • 2014
  • An automatic switch among ensembles of clustering algorithms is proposed as a part of the bibliographic big data retrieval system by utilizing a fuzzy inference engine as a decision support tool to select the fastest performing clustering algorithm between fuzzy C-means (FCM) clustering, Newman-Girvan clustering, and the combination of both. It aims to realize the best clustering performance with the reduction of computational complexity from O($n^3$) to O(n). The automatic switch is developed by using fuzzy logic controller written in Java and accepts 3 inputs from each clustering result, i.e., number of clusters, number of vertices, and time taken to complete the clustering process. The experimental results on PC (Intel Core i5-3210M at 2.50 GHz) demonstrates that the combination of both clustering algorithms is selected as the best performing algorithm in 20 out of 27 cases with the highest percentage of 83.99%, completed in 161 seconds. The self-adapted FCM is selected as the best performing algorithm in 4 cases and the Newman-Girvan is selected in 3 cases.The automatic switch is to be incorporated into the bibliographic big data retrieval system that focuses on visualization of fuzzy relationship using hybrid approach combining FCM and Newman-Girvan algorithm, and is planning to be released to the public through the Internet.

Hybrid Fireworks Algorithm with Dynamic Coefficients and Improved Differential Evolution

  • Li, Lixian;Lee, Jaewan
    • Journal of Internet Computing and Services
    • /
    • v.22 no.2
    • /
    • pp.19-27
    • /
    • 2021
  • Fireworks Algorithm (FWA) is a new heuristic swarm intelligent algorithm inspired by the natural phenomenon of the fireworks explosion. Though it is an effective algorithm for solving optimization problems, FWA has a slow convergence rate and less information sharing between individuals. In this paper, we improve the FWA. Firstly, explosion operator and explosion amplitude are analyzed in detail. The coefficient of explosion amplitude and explosion operator change dynamically with iteration to balance the exploitation and exploration. The convergence performance of FWA is improved. Secondly, differential evolution and commensal learning (CDE) significantly increase the information sharing between individuals, and the diversity of fireworks is enhanced. Comprehensive experiment and comparison with CDE, FWA, and VACUFWA for the 13 benchmark functions show that the improved algorithm was highly competitive.

Adaptive robust hybrid position/force control for a uncertain robot manipulator

  • Ha, In-Chul;Han, Myung-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.426-426
    • /
    • 2000
  • When real robot manipulators arc mathematically modeled, uncertainties are not avoidable. The uncertainties are often nonlinear and time varying, The uncertain factors come from imperfect knowledge of system parameters, payload change, friction, external disturbance and etc. We proposed a class of robust hybrid position/force control of manipulators and provided the stability analysis in the previous work. In the work, we propose a class of adaptive robust hybrid position/force control of manipulators with bound estimation and the stability based on Lyapunov function is presented. Especially, this controller does not need the information of uncertainty bound. The simulation results are provided to show the effectiveness of the algorithm.

  • PDF

Uplinks Analysis and Optimization of Hybrid Vehicular Networks

  • Li, Shikuan;Li, Zipeng;Ge, Xiaohu;Li, Yonghui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.473-493
    • /
    • 2019
  • 5G vehicular communication is one of key enablers in next generation intelligent transportation system (ITS), that require ultra-reliable and low latency communication (URLLC). To meet this requirement, a new hybrid vehicular network structure which supports both centralized network structure and distributed structure is proposed in this paper. Based on the proposed network structure, a new vehicular network utility model considering the latency and reliability in vehicular networks is developed based on Euclidean norm theory. Building on the Pareto improvement theory in economics, a vehicular network uplink optimization algorithm is proposed to optimize the uplink utility of vehicles on the roads. Simulation results show that the proposed scheme can significantly improve the uplink vehicular network utility in vehicular networks to meet the URLLC requirements.

A study on production and distribution planning problems using hybrid genetic algorithm (유전 알고리즘을 이용한 생산 및 분배 계획)

  • 정성원;장양자;박진우
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.26 no.4
    • /
    • pp.133-141
    • /
    • 2001
  • Rapid development in computer and network technology these days has created in environment in which decisions for manufacturing companies can be made in a much broader perspective. Especially, better decisions on production and distribution planning(PDP) problems can be made laking advantage of real time information from all the parties concerned. However, since the PDP problem-a core part of the supply chain management- is known to be the so-called NP-hard problem, so heuristic methods are dominantly used to find out solutions in a reasonable time. As one of those heuristic techniques, many previous studios considered genetic a1gorithms. A standard genetic a1gorithm applies rules of reproduction, gene crossover, and mutation to the pseudo-organisms so the organisms can pass along beneficial and survival-enhancing trails to a new generation. When it comes to representing a chromosome on the problem, it is hard to guarantee an evolution of solutions through classic a1gorithm operations alone, for there exists a strong epitasis among genes. To resolve this problem, we propose a hybrid genetic a1gorithm based on Silver-Meal heuristic. Using IMS-TB(Intelligent Manufacturing System Test-bed) problem sets. the good performance of the proposed a1gorithm is demonstrated.

  • PDF

Design and Implementation of Agent-Recruitment Service System based on Collaborative Deep Learning for the Intelligent Head Hunting Service (지능형 헤드헌팅 서비스를 위한 협업 딥 러닝 기반의 중개 채용 서비스 시스템 설계 및 구현)

  • Lee, Hyun-ho;Lee, Won-jin
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.2
    • /
    • pp.343-350
    • /
    • 2020
  • In the era of the Fourth Industrial Revolution in the digital revolution is taking place, various attempts have been made to provide various contents in a digital environment. In this paper, agent-recruitment service system based on collaborative deep learning is proposed for the intelligent head hunting service. The service system is improved from previous research [7] using collaborative deep learning for more reliable recommendation results. The Collaborative deep learning is a hybrid recommendation algorithm using "Recurrent Neural Network(RNN)" specialized for exponential calculation, "collaborative filtering" which is traditional recommendation filtering methods, and "KNN-Clustering" for similar user analysis. The proposed service system can expect more reliable recommendation results than previous research and showed high satisfaction in user survey for verification.