• Title/Summary/Keyword: Hybrid Intelligent Algorithm

Search Result 190, Processing Time 0.022 seconds

Hybrid Algorithm for Efficient learing of Regression Support Vector Machine (회귀용 Support Vector Machine의 효율적인 학습을 위한 조합형 알고리즘)

  • 조용현;박창환;박용수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.93-96
    • /
    • 2000
  • 본 논문에서는 SVM의 학습성 개선을 위해 모멘트와 kernel-adatron 기법이 조합된 하이브리드 학습알고리즘을 제안하였다. 제안된 학습알고리즘은 SVM의 학습기법인 기울기상승법에서 발생하는 최적해로의 수렴에 따른 발진을 억제하여 그 수렴속도를 좀 더 개선시키는 모멘트의 장점과 비선형 특징공간에서의 동작과 구현의 용이성을 가진 kernel-adatron 알고리즘의 장점을 그대로 살리는 것이다. 제안된 알고리즘을 비선형 함수 회귀에 적용해 본 결과 학습속도에 있어서 QP와 기존의 kernel-adatron 알고리즘보다 더 우수한 성능이 있음을 확인하였다

  • PDF

A Hybrid Method for Improvement of Evolutionary Computation (진화 연산의 성능 개선을 위한 하이브리드 방법)

  • 정진기;오세영
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.159-165
    • /
    • 2002
  • 진화연산에는 교배, 돌연변이, 경쟁, 선택이 있다. 이러한 과정 중에서 선택은 새로운 개체를 생산하지는 않지만, 모든 해중에서 최적의 해가 될만한 해는 선택하고, 그러지 않은 해는 버리는 판단의 역할을 한다. 따라서 아무리 좋은 해를 만들었다고 해도, 취사 선택을 잘못하면, 최적의 해를 찾지 못하거나, 또 많은 시간이 소요되게 된다. 따라서 본 논문에서는 stochastic한 성질을 갖고 있는 Tournament selection에 Local selection개념을 도입하여, 지역 해에서 벗어나 전역 해를 찾는데, 개선이 될 수 있도록 하였고 Fast Evolutionary Programming의 mutation과정을 개선하고, Genetic Algorithm의 연산자인 crossover와 mutation을 도입하여 Parallel search로 지역 해에서 벗어나 전역 해를 찾는 하이브리드 알고리즘을 제안하고자 한다.

  • PDF

Evolvable Hybrid-ware using FPGA (FPGA를 이용한 진화 하이브리드웨어)

  • 김태훈;이동욱;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.51-54
    • /
    • 2003
  • 진화하드웨어는 하드웨어 스스로 진화하여 필요한 회로를 구성한다 회로를 재구성하기 위해서 유전자 알고리즘을 사용한다. 유전자 알고리즘(Genetic Algorithm)은 전역적 탐색을 통하여 해를 구한다. 하지만 유전자 알고리즘은 많은 개체의 평가를 통하여 이루어지기 때문에 수행하는데 시간이 많이 소요된다. 이전의 연구에서 유전자 알고리즘 프로세서를 이용하여 진화하드웨어를 구성했다. 유전자 알고리즘 프로세서는 유연성이 떨어지고 범용적으로 사용하기 어렵다. 본 논문에서는 CPU를 이용하여 유전자 알고리즘 프로세서를 소프트웨어로 제어하는 방법을 제안한다 소프트웨어로 합성한 신호로 GAP의 동작을 제어하기 때문에 유연성을 가질 수 있다 FPGA에 CPU와 유전자 알고리즘 프로세서를 구현하여 one-chip 하드웨어를 구현한다.

  • PDF

Intelligent Query Answering System using Query Relaxation (질의 완화를 이용한 지능적인 질의 응답 시스템)

  • Hwang, Hye-Jeong;Kim, Kio-Chung;Yoon, Yong-Ik;Yoon, Seok-Hwan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.1
    • /
    • pp.88-98
    • /
    • 2000
  • Cooperative query answering provides neighborhood or associate information relevant to the initial query using the knowledge about the query and data. In this paper, we present an intelligent query answering system for suporting cooperative query answering system presented in this paper performs query relaxation process using hybrid knowledge base. The hybrid knowledge base which is used for relaxation of queries, composes of semantic list and rule based knowledge base for structural approach. Futhermore, this paper proposes the query relaxation algorithm for query reformulation using initial query on the basis of hybrid knowledge base.

  • PDF

An IMM Algorithm for Tracking Maneuvering Vehicles in an Adaptive Cruise Control Environment

  • Kim, Yong-Shik;Hong, Keum-Shik
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.3
    • /
    • pp.310-318
    • /
    • 2004
  • In this paper, an unscented Kalman filter (UKF) for curvilinear motions in an interacting multiple model (IMM) algorithm to track a maneuvering vehicle on a road is investigated. Driving patterns of vehicles on a road are modeled as stochastic hybrid systems. In order to track the maneuvering vehicles, two kinematic models are derived: A constant velocity model for linear motions and a constant-speed turn model for curvilinear motions. For the constant-speed turn model, an UKF is used because of the drawbacks of the extended Kalman filter in nonlinear systems. The suggested algorithm reduces the root mean squares error for linear motions and rapidly detects possible turning motions.

Development of Fuzzy Hybrid Redundancy for Sensor Fault-Tolerant of X-By-Wire System (X-By-Wire 시스템의 센서 결함 허용을 위한 Fuzzy Hybrid Redundancy 개발)

  • Kim, Man-Ho;Son, Byeong-Jeom;Lee, Kyung-Chang;Lee, Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.3
    • /
    • pp.337-345
    • /
    • 2009
  • The dependence of numerous systems on electronic devices is causing rapidly increasing concern over fault tolerance because of safety issues of safety critical system. As an example, a vehicle with electronics-controlled system such as x-by-wire systems, which are replacing rigid mechanical components with dynamically configurable electronic elements, should be fault¬tolerant because a devastating failure could arise without warning. Fault-tolerant systems have been studied in detail, mainly in the field of aeronautics. As an alternative to solve these problems, this paper presents the fuzzy hybrid redundancy system that can remove most erroneous faults with fuzzy fault detection algorithm. In addition, several numerical simulation results are given where the fuzzy hybrid redundancy outperforms with general voting method.

Performance Improvement of TIG Welders Using Intelligent Control Algorithm (지능제어 알고리즘을 이용한 펄스 인버터 TIG 용접기의 성능 향상)

  • 김규식
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.556-559
    • /
    • 2000
  • Pulse inverter-type TIG(Tungsten Inert Gas) arc welders are studied to investigate the dynamic performance of welding. Welding currents are controlled to be pulse waveforms resulting in stable are better welding performance. The hybrid-type controller is proposed to control the welding current. Todemonstrate the practical significance of our results we present some simulation results.

  • PDF

Hybrid Genetic Algorithms with Conditional Local Search

  • Yun, Young-Su;Seo, Seung-Lock;Kim, Jong-Hwan;Chiung Moon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.183-186
    • /
    • 2003
  • Hybrid genetic algorithms (HGAs) have been studied as various ways. These HGAs usually use both the global search property of genetic algorithm (GA) and the local search one of local search techniques. One of the general types, when constructing HGAs, is to incorporate a local search technique into GA loop, and then the local search technique is repeated as many iteration number as the loop. This paper proposes a new HGA with a conditional local search technique (c-HGA) that does not be repeated as many iteration number as GA loop. For effectiveness of the proposed c-HGA, a conventional HGA and GA are also suggested, and then these algorithms are compared with each other in numerical examples,

  • PDF

A Hybrid Genetic Algorithm Using Epistasis Information for Sequential Ordering Problems (서열순서화문제를 위한 상위정보를 이용하는 혼합형 유전 알고리즘)

  • Seo Dong-Il;Moon Byung-Ro
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.6
    • /
    • pp.661-667
    • /
    • 2005
  • In this paper, we propose a new hybrid genetic algorithm for sequential ordering problem (SOP). In the proposed genetic algorithm, the Voronoi quantized crossover (VQX) is used as a crossover operator and the path-preserving 3-Opt is used as a local search heuristic. VQX is a crossotver operator that uses the epistasis information of given problem instance. Since it is a crossover proposed originally for the traveling salesman problem (TSP), its application to SOP requires considerable modification. In this study, we appropriately modify VQX for SOP, and develop three algorithms, required in the modified VQX, named Feasible solution Generation Algorithm, Precedence Cycle Decomposition Algorithm, and Genic Distance Assignment Method. The results of the tests on SOP instances obtained from TSPLIB and ZIB-MP-Testdata show that the proposed genetic algorithm outperforms other genetic algorithms in stability and solution quality.

An Efficient Artificial Intelligence Hybrid Approach for Energy Management in Intelligent Buildings

  • Wahid, Fazli;Ismail, Lokman Hakim;Ghazali, Rozaida;Aamir, Muhammad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.5904-5927
    • /
    • 2019
  • Many artificial intelligence (AI) techniques have been embedded into various engineering technologies to assist them in achieving different goals. The integration of modern technologies with energy consumption management system and occupant's comfort inside buildings results in the introduction of intelligent building concept. The major aim of this integration is to manage the energy consumption effectively and keeping the occupant satisfied with the internal environment of the building. The last few couple of years have seen many applications of AI techniques for optimizing the energy consumption with maximizing the user comfort in smart buildings but still there is much room for improvement in this area. In this paper, a hybrid of two AI algorithms called firefly algorithm (FA) and genetic algorithm (GA) has been used for user comfort maximization with minimum energy consumption inside smart building. A complete user friendly system with data from various sensors, user, processes, power control system and different actuators is developed in this work for reducing power consumption and increase the user comfort. The inputs of optimization algorithms are illumination, temperature and air quality sensors' data and the user set parameters whereas the outputs of the optimization algorithms are optimized parameters. These optimized parameters are the inputs of different fuzzy controllers which change the status of different actuators according to user satisfaction.