• Title/Summary/Keyword: Hybrid Intelligent Algorithm

Search Result 190, Processing Time 0.02 seconds

A Task Scheduling Strategy in Cloud Computing with Service Differentiation

  • Xue, Yuanzheng;Jin, Shunfu;Wang, Xiushuang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5269-5286
    • /
    • 2018
  • Task scheduling is one of the key issues in improving system performance and optimizing resource management in cloud computing environment. In order to provide appropriate services for heterogeneous users, we propose a novel task scheduling strategy with service differentiation, in which the delay sensitive tasks are assigned to the rapid cloud with high-speed processing, whereas the fault sensitive tasks are assigned to the reliable cloud with service restoration. Considering that a user can receive service from either local SaaS (Software as a Service) servers or public IaaS (Infrastructure as a Service) cloud, we establish a hybrid queueing network based system model. With the assumption of Poisson arriving process, we analyze the system model in steady state. Moreover, we derive the performance measures in terms of average response time of the delay sensitive tasks and utilization of VMs (Virtual Machines) in reliable cloud. We provide experimental results to validate the proposed strategy and the system model. Furthermore, we investigate the Nash equilibrium behavior and the social optimization behavior of the delay sensitive tasks. Finally, we carry out an improved intelligent searching algorithm to obtain the optimal arrival rate of total tasks and present a pricing policy for the delay sensitive tasks.

Separations and Feature Extractions for Image Signals Using Independent Component Analysis Based on Neural Networks of Efficient Learning Rule (효율적인 학습규칙의 신경망 기반 독립성분분석을 이용한 영상신호의 분리 및 특징추출)

  • Cho, Yong-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.200-208
    • /
    • 2003
  • This paper proposes a separation and feature extraction of image signals using the independent component analysis(ICA) based on neural networks of efficient learning rule. The proposed learning rule is a hybrid fixed-point(FP) algorithm based on secant method and momentum. Secant method is applied to improve the performance by simplifying the 1st-order derivative computation for optimizing the objective function, which is to minimize the mutual informations of the independent components. The momentum is applied for high-speed convergence by restraining the oscillation in the process of converging to the optimal solution. The proposed algorithm has been applied to the composite images generated by random mixing matrix from the 10 images of $512\times512$-pixel. The simulation results show that the proposed algorithm has better performances of the separation speed and rate than those using the FP algorithm based on Newton and secant method. The proposed algorithm has been also applied to extract the features using a 3 set of 10,000 image patches from the 10 fingerprints of $256\times256$-pixel and the front and the rear paper money of $480\times225$-pixel, respectively, The simulation results show that the proposed algorithm has also better extraction speed than those using the another methods. Especially, the 160 basis vectors(features) of $16\times16$-pixel show the local features which have the characteristics of spatial frequency and oriented edges in the images.

Hybrid Heuristic Applied by the Opportunity Time to Solve the Vehicle Routing and Scheduling Problem with Time Window (시간 제약을 가지는 차량 경로 스케줄링 문제 해결을 위한 기회시간 반영 하이브리드 휴리스틱)

  • Yu, Young-Hoon;Cha, Sang-Jin;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.3
    • /
    • pp.137-150
    • /
    • 2009
  • This paper proposes the hybrid heuristic method to apply the opportunity time to solve the vehicle routing and scheduling problem with time constraints(VRSPTW). The opportunity time indicates the idle time which remains after the vehicle performs the unloading service required by each customer's node. In this proposed heuristic, we add the constraints to VRSPTW model for the opportunity time. We also obtain the initial solution by applying the cost evaluation function to the insertion strategy considering the opportunity time. In addition, we improve the former result by applying the opportunity time to the tabu search strategy by swapping the customer's node. Finally, we suggest the construction strategies of initial routing which can efficiently acquire the nearest optimal solution from various types of data in terms of geographical condition, scheduling horizon and vehicle capacity. Our experiment show that our heuristic can get the nearest optimal solution more efficiently than the Solomon's I1 heuristic.

  • PDF

A Hybrid Collaborative Filtering-based Product Recommender System using Search Keywords (검색 키워드를 활용한 하이브리드 협업필터링 기반 상품 추천 시스템)

  • Lee, Yunju;Won, Haram;Shim, Jaeseung;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.151-166
    • /
    • 2020
  • A recommender system is a system that recommends products or services that best meet the preferences of each customer using statistical or machine learning techniques. Collaborative filtering (CF) is the most commonly used algorithm for implementing recommender systems. However, in most cases, it only uses purchase history or customer ratings, even though customers provide numerous other data that are available. E-commerce customers frequently use a search function to find the products in which they are interested among the vast array of products offered. Such search keyword data may be a very useful information source for modeling customer preferences. However, it is rarely used as a source of information for recommendation systems. In this paper, we propose a novel hybrid CF model based on the Doc2Vec algorithm using search keywords and purchase history data of online shopping mall customers. To validate the applicability of the proposed model, we empirically tested its performance using real-world online shopping mall data from Korea. As the number of recommended products increases, the recommendation performance of the proposed CF (or, hybrid CF based on the customer's search keywords) is improved. On the other hand, the performance of a conventional CF gradually decreased as the number of recommended products increased. As a result, we found that using search keyword data effectively represents customer preferences and might contribute to an improvement in conventional CF recommender systems.

Integration and Decision Algorithm for Location-Based Road Hazardous Data Collected by Probe Vehicles (프로브 수집 위치기반 도로위험정보 통합 및 판단 알고리즘)

  • Chae, Chandle;Sim, HyeonJeong;Lee, Jonghoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.6
    • /
    • pp.173-184
    • /
    • 2018
  • As the portable traffic information collection system using probe vehicles spreads, it is becoming possible to collect road hazard information such as portholes, falling objects, and road surface freezing using in-vehicle sensors in addition to existing traffic information. In this study, we developed a integration and decision algorithm that integrates time and space in real time when multiple probe vehicles detect events such as road hazard information based on GPS coordinates. The core function of the algorithm is to determine whether the road hazard information generated at a specific point is the same point from the result of detecting multiple GPS probes with different GPS coordinates, Generating the data, (3) continuously determining whether the generated event data is valid, and (4) ending the event when the road hazard situation ends. For this purpose, the road risk information collected by the probe vehicle was processed in real time to achieve the conditional probability, and the validity of the event was verified by continuously updating the road risk information collected by the probe vehicle. It is considered that the developed hybrid processing algorithm can be applied to probe-based traffic information collection and event information processing such as C-ITS and autonomous driving car in the future.

Social Network-based Hybrid Collaborative Filtering using Genetic Algorithms (유전자 알고리즘을 활용한 소셜네트워크 기반 하이브리드 협업필터링)

  • Noh, Heeryong;Choi, Seulbi;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.19-38
    • /
    • 2017
  • Collaborative filtering (CF) algorithm has been popularly used for implementing recommender systems. Until now, there have been many prior studies to improve the accuracy of CF. Among them, some recent studies adopt 'hybrid recommendation approach', which enhances the performance of conventional CF by using additional information. In this research, we propose a new hybrid recommender system which fuses CF and the results from the social network analysis on trust and distrust relationship networks among users to enhance prediction accuracy. The proposed algorithm of our study is based on memory-based CF. But, when calculating the similarity between users in CF, our proposed algorithm considers not only the correlation of the users' numeric rating patterns, but also the users' in-degree centrality values derived from trust and distrust relationship networks. In specific, it is designed to amplify the similarity between a target user and his or her neighbor when the neighbor has higher in-degree centrality in the trust relationship network. Also, it attenuates the similarity between a target user and his or her neighbor when the neighbor has higher in-degree centrality in the distrust relationship network. Our proposed algorithm considers four (4) types of user relationships - direct trust, indirect trust, direct distrust, and indirect distrust - in total. And, it uses four adjusting coefficients, which adjusts the level of amplification / attenuation for in-degree centrality values derived from direct / indirect trust and distrust relationship networks. To determine optimal adjusting coefficients, genetic algorithms (GA) has been adopted. Under this background, we named our proposed algorithm as SNACF-GA (Social Network Analysis - based CF using GA). To validate the performance of the SNACF-GA, we used a real-world data set which is called 'Extended Epinions dataset' provided by 'trustlet.org'. It is the data set contains user responses (rating scores and reviews) after purchasing specific items (e.g. car, movie, music, book) as well as trust / distrust relationship information indicating whom to trust or distrust between users. The experimental system was basically developed using Microsoft Visual Basic for Applications (VBA), but we also used UCINET 6 for calculating the in-degree centrality of trust / distrust relationship networks. In addition, we used Palisade Software's Evolver, which is a commercial software implements genetic algorithm. To examine the effectiveness of our proposed system more precisely, we adopted two comparison models. The first comparison model is conventional CF. It only uses users' explicit numeric ratings when calculating the similarities between users. That is, it does not consider trust / distrust relationship between users at all. The second comparison model is SNACF (Social Network Analysis - based CF). SNACF differs from the proposed algorithm SNACF-GA in that it considers only direct trust / distrust relationships. It also does not use GA optimization. The performances of the proposed algorithm and comparison models were evaluated by using average MAE (mean absolute error). Experimental result showed that the optimal adjusting coefficients for direct trust, indirect trust, direct distrust, indirect distrust were 0, 1.4287, 1.5, 0.4615 each. This implies that distrust relationships between users are more important than trust ones in recommender systems. From the perspective of recommendation accuracy, SNACF-GA (Avg. MAE = 0.111943), the proposed algorithm which reflects both direct and indirect trust / distrust relationships information, was found to greatly outperform a conventional CF (Avg. MAE = 0.112638). Also, the algorithm showed better recommendation accuracy than the SNACF (Avg. MAE = 0.112209). To confirm whether these differences are statistically significant or not, we applied paired samples t-test. The results from the paired samples t-test presented that the difference between SNACF-GA and conventional CF was statistical significant at the 1% significance level, and the difference between SNACF-GA and SNACF was statistical significant at the 5%. Our study found that the trust/distrust relationship can be important information for improving performance of recommendation algorithms. Especially, distrust relationship information was found to have a greater impact on the performance improvement of CF. This implies that we need to have more attention on distrust (negative) relationships rather than trust (positive) ones when tracking and managing social relationships between users.

Parking Path Planning For Autonomous Vehicle Based on Deep Learning Model (자율주행차량의 주차를 위한 딥러닝 기반 주차경로계획 수립연구)

  • Ji hwan Kim;Joo young Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.4
    • /
    • pp.110-126
    • /
    • 2024
  • Several studies have focused on developing the safest and most efficient path from the current location to the available parking area for vehicles entering a parking lot. In the present study, the parking lot structure and parking environment such as the lane width, width, and length of the parking space, were vaired by referring to the actual parking lot with vertical and horizontal parking. An automatic parking path planning model was proposed by collecting path data by various setting angles and environments such as a starting point and an arrival point, by putting the collected data into a deep learning model. The existing algorithm(Hybrid A-star, Reeds-Shepp Curve) and the deep learning model generate similar paths without colliding with obstacles. The distance and the consumption time were reduced by 0.59% and 0.61%, respectively, resulting in more efficient paths. The switching point could be decreased from 1.3 to 1.2 to reduce driver fatigue by maximizing straight and backward movement. Finally, the path generation time is reduced by 42.76%, enabling efficient and rapid path generation, which can be used to create a path plan for autonomous parking during autonomous driving in the future, and it is expected to be used to create a path for parking robots that move according to vehicle construction.

A Hybrid Feature Selection Method using Univariate Analysis and LVF Algorithm (단변량 분석과 LVF 알고리즘을 결합한 하이브리드 속성선정 방법)

  • Lee, Jae-Sik;Jeong, Mi-Kyoung
    • Journal of Intelligence and Information Systems
    • /
    • v.14 no.4
    • /
    • pp.179-200
    • /
    • 2008
  • We develop a feature selection method that can improve both the efficiency and the effectiveness of classification technique. In this research, we employ case-based reasoning as a classification technique. Basically, this research integrates the two existing feature selection methods, i.e., the univariate analysis and the LVF algorithm. First, we sift some predictive features from the whole set of features using the univariate analysis. Then, we generate all possible subsets of features from these predictive features and measure the inconsistency rate of each subset using the LVF algorithm. Finally, the subset having the lowest inconsistency rate is selected as the best subset of features. We measure the performances of our feature selection method using the data obtained from UCI Machine Learning Repository, and compare them with those of existing methods. The number of selected features and the accuracy of our feature selection method are so satisfactory that the improvements both in efficiency and effectiveness are achieved.

  • PDF

Efficiency Optimization Control of SynRM Drive with HAI Controller (HAI 제어기에 의한 SynRM 드라이브의 효율 최적화 제어)

  • Jung, Dong-Wha;Choi, Jung-Sik;Ko, Jae-Sub
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.4
    • /
    • pp.98-106
    • /
    • 2006
  • This paper is proposed an efficiency optimization control algorithm for a synchronous reluctance motor which minimizes the cower and iron losses. The design of the speed controller based on adaptive fuzzy-neural networks(AFNN) controller that is implemented using fuzzy control and neural networks. There exists a variety of combinations of d and f-axis current which provide a specific motor torque. The objective of the efficiency optimization controller is to seek a combination of d and q-axis current components, which provides minimum losses at a certain operating point in steady state. It is shown that the current components which directly govern the torque production have been very well regulated by the efficiency optimization control scheme. The proposed algorithm allows the electromagnetic losses in variable speed and torque drives to be reduced while keeping good torque control dynamics. The control performance of the hybrid artificial intelligent(HAI) controller is evaluated by analysis for various operating conditions. Analysis results are presented to show the validity of the proposed algorithm

Performance Improvement on Fuzzy C-Means Algorithm for Nonlinear Blind Channel Equalization (비선형 블라인드 채널등화를 위한 퍼지 클러스터 알고리즘의 성능개선)

  • Park, Seong-Dae;Han, Su-Hwan
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.05a
    • /
    • pp.382-388
    • /
    • 2007
  • In this paper, a modified Fuzzy C-Means (MFCM) algorithm is presented for nonlinear blind channel equalization. The proposed MFCM searches the optimal channel output states of a nonlinear channel from the received symbols, based on the Bayesian likelihood fitness function instead of a conventional Euclidean distance measure. Next, the desired channel states of a nonlinear channel are constructed with the elements of estimated channel output states, and placed at the center of a Radial Basis Function (RBF) equalizer to reconstruct transmitted symbols. In the simulations, binary signals are generated at random with Gaussian noise. The performance of the proposed method is compared with that of a hybrid genetic algorithm (GA merged with simulated annealing (SA): GASA), and the relatively high accuracy and fast searching speed are achieved.

  • PDF