• Title/Summary/Keyword: Hybrid Fiber

Search Result 772, Processing Time 0.03 seconds

Research Trends in Hybrid Cross-Laminated Timber (CLT) to Enhance the Rolling Shear Strength of CLT (CLT의 rolling shear 향상을 위한 hybrid cross laminated timber 연구 동향)

  • YANG, Seung Min;LEE, Hwa Hyung;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.336-359
    • /
    • 2021
  • In this study, hybrid CLT research and development trends were analyzed to improve the low rolling shear strength of CLT, a large wooden panel used in high-rise wooden buildings. Through this, basic data that can be used in research and development directions for localization of CLT were prepared. As a way to improve the low rolling shear strength, the use of hardwood lamina, the change of the lamina arrangement angle, and the use of structural composite materials are mainly used. Rolling shear strength and shear modulus of hardwood lamina are more than twice as high as softwood lamina. It confirmed that hardwoods can be used and unused species can be used. Rolling shear strength 1.5 times, shear modulus 8.3 times, bending stiffness 4.1 times improved according to the change of the layer arrangement angle, and the CLT strength was confirmed by reducing the layer arrangement angle. Structural wood-based materials have been improved by up to 1.35 times MOR, 1.5 times MOE, and 1.59 times rolling shear strength when used as laminas. Block shear strength between the layer materials was also secured by 7.0 N/mm2, which is the standard for block shear strength. Through the results of previous studies, it was confirmed that the strength performance was improved when a structural wood based materials having a flexural performance of MOE 7.0 GPa and MOR 40.0 MPa or more was used. This was determined based on the strength of layered materials in structural wood-based materials. The optimal method for improving rolling shear strength is judged to be the most advantageous application of structural wood based materials with strength values according to existing specifications. However, additional research is needed on the orientation of CLT lamina arrangement according to the fiber arrangement of structural wood-based materials, and the block shear strength between lamina materials.

The Effect of Maturity Stage and Particle Length of Sorghum-Sudan Hybrid on the Quality of Silage (Sorghum-Sudan Hybrid의 생육시기와 절단길이가 Silage의 품종에 미치는 영향)

  • 최낙민;문영식;고영두
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.5 no.1
    • /
    • pp.73-78
    • /
    • 1985
  • The purpose of this study is to examine the effect of maturity stages and particle length on quality of silage made from Sorghum-sudan hybrid (Pioneer 988). The silage was made at heading, milky, dough and yellow ripe stage and cut 1.0, 2.5, 4.0cm at each stage. The quality of the silage was evaluated on the bases of the chemical compositions, content of organic acids, pH and $NH_3-N$ of the silage, and also the correlation between main compositions of the silage. The results were summarized as follows; 1. The moisture content was decreased with advancing maturity, but dry matter content was increased. Crude protein was decreased with advancing maturity at the level of 12.55 percentageat heading stage. Crude fiber was tended to increase. 2. The moisture content of silage was markedly decreased with advancing maturity (p<0.01). 3. The pH value of silage was the lowest when particle length was 2.5cm, and there was no significant difference between particle lengths. At the yellow ripe stage, the pH value was the lowest (3.53) and at the dough stage, the pH value was the highest (4.59) (p<0.01). 4. The rate of $NH_3-N$ to total-N was the highest (16.3%) at heading stage, the lowest (9.2%) at the dough stage. 5. The organic acid contents was not uniformly fixed at the particle length, but the highest quality silage was produced at yellow ripe stage as was not produced butyric acid and plenty of lactic acid was contented. 6. The correlations between pH and lactic acid (r=0.719), pH and total acid (r=-0.716), butyric acid and Flieg's score (r=0.872) were negative, respectively (p<0.01). And those between lactic acid and total acid (r=0.990), moisture and $NH_3-N$ (r=0.767) were positive, respectively (p<0.01).

  • PDF

Recommendations of Environmental Reduction Factor of FRP Rebar for Durability Design of Concrete Structure (콘크리트 보강용 FRP 보강근의 내구성 설계를 위한 환경영향계수의 제안)

  • Park Chan-Gi;Won Jong-Pil;Kang Joo-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.529-539
    • /
    • 2004
  • The corrosion of steel rebars has been the major cause of reinforced concrete deterioration. FRP(Fiber-reinforced polymer) rebar has emerged as one of the most promising and affordable solutions to the corrosion problems of steel reinforcement in structural concrete. However, FRP rebar is prone to deteriorate due to other degradation mechanisms than those for steel. The high alkalinity of concrete, for instance, is a possible degradation source. Therefore, the USA, Japan, Canada, UK. etc are using environmental reduction factor. Although difference design guidelines were drawn in many, including USA, Japan, Canada, UK etc, recommendations and coefficients that could take into account the long-term behavior of FRP reinforcement were not well defined. This study focuses on recommendation of environmental reduction factor of FRP rebar. Environment reduction factor were decided using durability test result. FRP rebars were subjected to twelve type of exposure conditions including alkaline solution, acid solution, salt solution and deionized water etc. The water absorption behavior was observed by means of simple gravimetric measurements and durability properties were investigated by performing tensile, compressive and short beam tests. Based on the experimental result, environmental reduction factor of hybrid FRP rebar(A), and (C) and CFRP rebar was decided as 0.85. Also, hybrid FRP rebar(B) and GFRP rebar were decided as 0.7 for the environmental reduction factor

Development of Performance Verification Method for Components of IoT-based Industrial Valve Safety Management System (IoT 기반 산업용 밸브 안전관리 시스템 구성장치의 성능검증 방안 개발)

  • Kim, Jae-Ok;Lyu, Geun-Jun;Lee, Kyung-Sik;Kim, Jung-Hoon
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.5
    • /
    • pp.10-19
    • /
    • 2020
  • Valve leak accidents in petrochemistry plants and gas utilities cause human and property damage. The main reason why happen gas inhalation, poisoning, fire and explosion accidents is gas valve leakage. To prevent gas leakage, inspectors check the facilities in the field. And they are at risk of gas leak accidents. So we applied IoT-based risk assessment, monitoring and automatic control system. It can detect both internal and external gas leakage, do real-time monitoring of industrial valve in the plant by using hybrid sensor. As the new safety management system for industrial valve is developed, it needs method to evaluate device performance and environmental components for the system. This study is about development of method to verify performance of the explosion-proofed hybrid sensing system include gas detector and optical fiber sensor supporting wire and wireless communication.

Manufacturing of Hybrid Metal Matrix Composites used $Al_2O_3$ Short Fiber and $Al_2O_3$-TiC Composite Powder Synthesized by SHS Process (SHS법에 의해 제조된 $Al_2O_3$-TiC복합분말과 $Al_2O_3$단섬유를 강화재로 사용한 하이브리드 금속기 복합재료의 제조)

  • Kim, Dong-Hyeon;Maeng, Deok-Yeong;Lee, Jong-Hyeon;Won, Chang-Whan
    • Korean Journal of Materials Research
    • /
    • v.9 no.3
    • /
    • pp.315-321
    • /
    • 1999
  • Metal matrix composites have been extensively studied because of their excellent characteristics for structural application. $Al_2O_3$ and SiC have been used as a common reinforcement owing to their good mechanical properties. However the manufacturing cost of these ceramic reinforcement is expensive, so the use of the composites has been restricted to special purposes. In this study, we tested the application possibility as a reinforcement of $Al_2O_3$-TiC powder synthesized by SHS(Self-propagating High-temperature Synthesis) process to Al alloy matrix composite. Also, $Al_2O_3$ short fibers were added with the synthesized powders in order to apply to the Al matrix hybrid composites. Squeeze infiltration casting process was used to make the composite with 25vol% of reinforcement. Microstructure and crystal structure were examined by SEM, OM and XRD, also the mechanical properties were studied by the compressive test and wear test.

  • PDF

Temperature and microbial changes of corn silage during aerobic exposure

  • Lee, Seong Shin;Lee, Hyuk Jun;Paradhipta, Dimas Hand Vidya;Joo, Young Ho;Kim, Sang Bum;Kim, Dong Hyeon;Kim, Sam Churl
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.7
    • /
    • pp.988-995
    • /
    • 2019
  • Objective: This study was conducted to estimate the temperature and microbial changes of corn silages during aerobic exposure. Methods: Kwangpyeongok (KW) and Pioneer 1543 (PI) corn hybrids were harvested at 29.7% of dry matter and chopped to 3 to 5 cm lengths. Homo (Lactobacillus plantarum; LP) or hetero (Lactobacillus buchneri; LB) fermentative inoculants at $1.2{\times}10^5$ colony forming unit/g of fresh forage was applied to the chopped corn forage which was then ensiled in quadruplicate with a $2{\times}2$ (hybrid${\times}$inoculant) treatment arrangement for 100 days. After the silo was opened, silage was sub-sampled for analysis of chemical compositions, in vitro digestibility, and fermentation indices. The fresh silage was continued to determine aerobic exposure qualities by recorded temperature and microbial changes. Results: The KW silages had higher (p<0.01) in vitro digestibilities of dry matter and neutral detergent fiber than those of PI silages. Silages applied with LB had higher (p<0.001) acetate concentration, but lower (p<0.01) lactate concentration and lactate to acetate ratio than those of LP silages. The interaction effect among hybrid and inoculant was detected in acetate production (p = 0.008), aerobic stability (p = 0.006), and lactic acid bacteria count (p = 0.048). The yeast was lower (p = 0.018) in LB silages than that in LP silages. During the aerobic exposure, PI silages showed higher (p<0.05) temperature and mold than KW silages, while LP silages had higher (p<0.05) lactic acid bacteria and yeast than LB silages. Conclusion: The results indicated that the changes of silage temperature during aerobic exposure seems mainly affected by mold growth, while applied LB only enhanced aerobic stability of PI silages.

Effect of Different Drained Conditions on Growth, Forage Production and Quality of Sorghum, Sorghum × Sudangrass and Sudangrass Hybrids at Paddy Field (논에서 배수조건에 따른 수수류 품종의 생육특성, 생산성 및 품질 비교)

  • Ji, Hee-Chung;Cho, Jung-Ho;Ju, Jung-Il
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.31 no.2
    • /
    • pp.119-126
    • /
    • 2011
  • This experiment was carried out to know adaptability and forage production and quality of sorghum, sorghum ${\times}$ sudangrass and sudangrass hybrids depend on drained condition at paddy field from 2007 to 2008 at Chungnam province. Growth, forage production and quality of sorghum, sorghum ${\times}$ sudangrass and sudangrass hybrids showed more well drained condition than poorly drained condition at paddy field. Among growth characteristics, 'SS405' hybrids were somewhat strong for waterlogging, then and good at stem diameter, disease resistance. The dry yield of 'SS405' hybrid at poorly drained paddy field was the highest as 12,938 kg per ha. Fresh yield of poorly drained paddy field was 52.7% compared to that of well drained paddy field. The dry matter yield of poorly drained paddy field was the lower as 66.4% than that of well drained condition. ADF (acid detergent fiber), NDF (neutral detergent fiber), CP (crude protein) and IVDMD (in vitro dry matter digestibility) in poorly drained paddy field were 90.3%, 100.6%, 85.7% and 89.6% level compared to well drained paddy field.

A Real-Time Control Architecture for a Semi-Autonomous Underwater Vehicle (반자율 무인잠수정을 위한 실시간 제어 아키텍쳐)

  • LI JI-HONG;JEON BONG-HWAN;LEE PAN-MOOK;WON HONG-SEOK
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.198-203
    • /
    • 2004
  • This paper describes a real-time control architecture for DUSAUV (Dual Use Semi-Autonomous Underwater Vehicle), which has been developed at Korea Research Institute of Ships & Ocean Engineering (KRISO), KORDI, for being a test-bed oj development of technologies for underwater navigation and manipulator operation. DUSAUV has three built-in computers, seven thrusters for 6 degree of freedom motion control, one 4-function electric manipulator, one pan/tilt unit for camera, one ballasting motor, built-in power source, and various sensors such as IMU, DVL, sonar, and so on. A supervisor control system for GUI and manipulator operation is mounted on the surface vessel and communicates with vehicle through a fiber optic link. Furthermore, QNX, one of real-time operating system, is ported on the built-in control and navigation computers of vehicle for real-time control purpose, while MicroSoft OS product is ported on the supervisor system for GUI programming convenience. A hierarchical control architecture which consist of three layers (application layer, real-time layer, and physical layer) has been developed for efficient control system of above complex underwater robotic system. The experimental results with implementation of the layered control architecture for various motion control of DUSAUV in a basin of KRISO is also provided.

  • PDF

Enhancing maintenance performance of tunnel drainage using vibration from polyvinylidene fluoride(PVDF) film (압전필름의 진동을 활용한 터널배수재 유지관리 성능 개선)

  • Xin, Zhen-Hua;Moon, Jun-Ho;Song, Young-Karb;Kim, Young-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.822-826
    • /
    • 2015
  • This study investigated the possible use of vibration from polyvinylidene fluoride(PVDF) film to enhance the performance of the deteriorated tunnel drainage due to physical/chemical clogging of the fine particles through a series of laboratory experiments. The test program was consisted of two different experiments, fundamental investigation and drainage model test. In the fundamental investigation, flow of clay slurry mixed with 50% water (freshwater and brine) on PVDF film with various frequencies was examined. In the model tests, slurry clogging to the woven fiber attached to drainage pipe and its reduction by vibration was investigated. Results of the experiment show that vibration from PVDF film enhances the drain performance significantly. Based upon the investigation, it gives an essential data that are needed for a potential use of hybrid drainage system with PVDF.

Carbon Nano Tube Dispersion Evaluation in B-stage Resin Films (B-stage 레진 필름의 카본나노튜브 분산도 평가 및 제조공정 최적화)

  • Oh, Young-Seok;Park, Tea-Hoon;Byun, Joon-Hyung;Yi, Jin-Woo;Kim, Byung-Sun;Joe, Chee-Ryong
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.353-357
    • /
    • 2016
  • An appropriate way to fabricate a hybrid composite containing evenly dispersed carbon nano tubes(CNTs) is to stacking B-stage resin films that contain evenly dispersed CNTs and various reinforcing fiber layers alternatively. In the present study, B-stage resin films are manufactured via shear mixing and three-roll milling. CNT dispersion in resin via these two processes are evaluated by SEM on their fracture surfaces. For more efficient process, the dispersivities are evaluated according to the number of calendering passes. Samples are made for different number of passes during calendering, and their dispersions are evaluated via SEM fractographs as well as by measuring their electrical conductivities. Additionally, the optimal process conditions are obtained by measuring the electrical conductivity and evaluating their dispersivity of the samples prepared by gap mode and force mode.