• Title/Summary/Keyword: Hybrid Fiber

Search Result 772, Processing Time 0.031 seconds

Active shape change of an SMA hybrid composite plate

  • Daghia, Federica;Inman, Daniel J.;Ubertini, Francesco;Viola, Erasmo
    • Smart Structures and Systems
    • /
    • v.6 no.2
    • /
    • pp.91-100
    • /
    • 2010
  • An experimental study was carried out to investigate the shape control of plates via embedded shape memory alloy (SMA) wires. An extensive body of literature proposes the use of SMA wires to actively modify the shape or stiffness of a structure; in most cases, however, the study focuses on modeling and little experimental data is available. In this work, a simple proof of concept specimen was built by attaching four prestrained SMA wires to one side of a carbon fiber laminate plate strip. The specimen was clamped at one end and tested in an environmental chamber, measuring the tip displacement and the SMA temperature. At heating, actuation of the SMA wires bends the plate; at cooling deformation is partially recovered. The specimen was actuated a few times between two fixed temperatures $T_c$ and $T_h$, whereas in the last actuation a temperature $T_f$ > $T_h$ was reached. Contrary to most model predictions, in the first actuation the transformation temperatures are significantly higher than in the following cycles, which are stable. Moreover, if the temperature $T_h$ is exceeded, two separate actuations occur during heating: the first follows the path of the stable cycles; the second, starting at $T_h$, is similar to the first cycle. An interpretation of the phenomenon is given using some differential scanning calorimeter (DSC) measurements. The observed behavior emphasizes the need to build a more comprehensive constitutive model able to include these effects.

Broad and stage-based sensing function of HCFRP sensors

  • Wu, Z.S.;Yang, C.Q.
    • Smart Structures and Systems
    • /
    • v.3 no.2
    • /
    • pp.133-146
    • /
    • 2007
  • This paper addresses a new type of broad and stage-based hybrid carbon fiber reinforced polymer (HCFRP) sensor that is suitable for the sensing of infrastructures. The HCFRP sensors, a type of composite sensor, are fabricated with three types of carbon tows of different strength and moduli. For all of the specimens, the active materials are carbon tows by virtue of their electrical conductivity and piezoresistivity. The measurement principles are based on the micro- and macro-fractures of different types of carbon tows. A series of experiments are carried out to investigate the sensing performances of the HCFRP sensors. The main variables include the stack order and volume fractions of different types of carbon tows. It is shown that the change in electrical resistance is in direct proportion to the strain/load in low strain ranges. However, the fractional change in electrical resistance (${\Delta}R/R_0$) is smaller than 2% prior to the macrofractures of carbon tows. In order to improve the resistance changes, measures are taken that can enhance the values of ${\Delta}R/R_0$ by more than 2 times during low strain ranges. In high strain ranges, the electrical resistance changes markedly with strain/load in a step-wise manner due to the gradual ruptures of different types of carbon tows at different strain amplitudes. The values of ${\Delta}R/R_0$ due to the fracture of high modulus carbon tows are larger than 36%. Thus, it is demonstrated that the HCFRP sensors have a broad and stage-based sensing capability.

Flexural performance of wooden beams strengthened by composite plate

  • Tahar, Hassaine Daouadji;Abderezak, Rabahi;Rabia, Benferhat
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.3
    • /
    • pp.233-259
    • /
    • 2020
  • Using bonded fiber-reinforced polymer laminates for strengthening wooden structural members has been shown to be an effective and economical method. In this research, properties of suitable composite materials (sika wrap), adhesives and two ways of strengthening beams exposed to bending moment are presented. Passive or slack reinforcement is one way of strengthening. The most effective way of such a strengthening was to place reinforcement laminates in the stretched part of the wooden beam (lower part in our case), in order to investigate the effectiveness of externally bonding FRP to their soffits. The model is based on equilibrium and deformations compatibility requirements in and all parts of the strengthened beam, i.e., the wooden beam, the sika wrap composite plate and the adhesive layer. The theoretical predictions are compared with other existing solutions. This research is helpful for the understanding on mechanical behaviour of the interface and design of the composite-wooden hybrid structures. The results showed that the use of the new strengthening system enhances the performance of the wooden beam when compared with the traditional strengthening system.

A Study on 1024-QAM RF Transmission System using Channel Bonding Technologies for 8K-UHD Services (방송망 채널결합형 8K-UHDTV 1024-QAM RF 전송시스템 개발에 관한 연구)

  • Kim, Sung-Hoon;Choi, Jinsoo;Kim, Jinwoong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.07a
    • /
    • pp.320-321
    • /
    • 2011
  • 본 논문은 디지털 케이블전송망인 HFC(Hybrid Fiber and Coaxial)망 기반하에서 6MHz 다수의 방송채널결합 기술을 이용하여, 대용량 3D 및 8K-UHD 콘텐츠 전송을 위한 방송망 채널결합형 200Mbps 급 1024-QAM 송수신시스템 개발에 대하여 기술한다. H.264 비디오 부호화기를 사용하여 8K-UHDTV 및 3D/UHD 융합형 서비스를 시청자에게 제공하기 위해서는 약 120~160Mbps 의 대용량 데이터 전송률이 확보되어야 한다. 이와같이 대용량 3D/8K-UHDTV 콘텐츠를 전송하기 위해서는 상대적으로 채널환경이 우수한 HFC 디지털 케이블망을 이용한 대용량 실감미디어 콘텐츠 전송기법에 대한 연구가 주목 받고 있다. 본 논문에서는 FPGA 를 이용하여 HFC 망 기반에서 기존 OpenCalbe/DOCSIS 3.0 256-QAM 대비 약 30% 전송효율이 개선된 3D/8K-UHDTV 대용량 실감미디어 콘텐츠 전송을 위한 방송망 채널결합형 1024-QAM 송수신기 구현 및 개발에 관한 내용을 기술한다.

  • PDF

Hybrid Fiber/Copper Cable for FTTC (FTTC용 광동복합케이블)

  • Park Sung-Yul;Son Min;Hong Sang-Ki
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.137-139
    • /
    • 2002
  • 본 논문은 FTTC용 공유급전시스템을 구성하기 위한 광동복합케이블 연구에 관련한 것이다. 광섬유 및 구리 도체를 하나의 케이블에 포함한 복합케이블은 공유급전 시스템에서 포설 비용 절감 및 서비스의 운용 및 유지 보수의 효율 향상을 가능하게 한다. KT 운용시스템연구소의 공유급전 시스템 구성에 따라서 세 가지 type의 광동복합 케이블을 설계하였다. 구리 도체로는 200Vdc 출력 전력을 최대 500m까지 급전을 지원하는 0.65mm 직경의 구리 도체가 선정되었으며 KT 규격을 만족하는 일반 단일모드 광섬유가 적용되었다. 케이블 구조는 다심화에 유리하고 중간분기가 용이한 loose tube형 구조를 채택하였으며, 다심 케이블에서는 stranding된 3층의 집합 코아를 가지도록 설계하였다. 다심의 광동복합케이블은 32심 광섬유와 18페어(pair)의 동선을 실장하여, 두 조의 케이블로 32개의 ONU의 광신호전송 및 전력 공급이 가능하도록 하였다. 또한 포설 및 중간 분기 작업시 광섬유로의 접근이 용이하게 하기 위해 광섬유 튜브를 최외층에 배치하였다. 복합케이블은 상용 loose tube형 광케이블과 동일한 공정으로 제작되었으며, 기계적 및 환경적 특성에서 KT 규격을 만족하는 것을 확인하였다.

  • PDF

Morphology and Electrical Conductivity of PS/PMMA/SMMA Blends Filled with Carbon Black

  • Lee, Moo-Sung;Ha, Min-Gyu;Ko, Hyun-Jin;Yang, Kap-Seung;Lee, Wan-Jin;Park, Min
    • Fibers and Polymers
    • /
    • v.1 no.1
    • /
    • pp.32-36
    • /
    • 2000
  • An alternative strategy to .educe the percolation threshold of carbon black (CB) in polymer blends was investigated using random copolymer ternary blends of polystyrene (PS), poly(methyl methacrylate)(PMMA), and a styrene-methyl methacrylate random copolymer (SMMA). The target morphology was to selectively locate CB particles in the encapsulating layer of SMMA during melt mixing. The CB used in this study is BP-2000 from Cabot and has a strong selective affinity to PS. Even when the CB was premixed with SMMA, it moves to the PS phase during the melt mixing. However, we also observed the CB particles located at the interface between SMMA and PS phases. Through this study it is found that the interaction between polymers and CB particles is critical for selectively localizing CB particles in multi-component polymer blends. Although appropriate processing condition may retard the movement of CB particles to the polymer phase with affinity, it cannot prevent it completely and locate them to the SMMA phase, which is not thermodynamically favored. To locate CB particles in an encapsulating layer of ternary polymer blends, first of all, polymers forming it should have selective affinity to CB.

  • PDF

Strengthening of C/C Composites through Ceramer Matrix

  • Dhakate, S.R.;Mathur, R.B.;Dhami, T.L.
    • Carbon letters
    • /
    • v.5 no.4
    • /
    • pp.159-163
    • /
    • 2004
  • The polymer-ceramic hybrid, known as 'ceramer', was synthesized by a sol-gel process by incorporating different amount of alkoxide as source of silicon in resorcinol-formaldehyde in presence of basic catalyst to get different percentage of silicon in ultimate carbonized composites. FTIR of the ceramer confirms that it is a network of Si-O-Si, Si-O-$CH_2$ and Si-OH type groups linked with benzene ring. Different amount of silicon in the ceramer exhibits varying temperature of thermal stability and lower coefficient of thermal expansion as compared to pure resorcinol-formaldehyde resin. The lower value of CTE in ceramer is due to existence of silica and resorcinol -formaldehyde in co-continuous phase. Unidirectional composites prepared with ceramer matrix and high-strength carbon fibers show lower value of flexural strength at polymer stage as compared to those prepared with resorcinol-formaldehyde resin. However, after heat treatment to $1450^{\circ}C$, the ceramer matrix composites show large improvement in the mechanical properties, i.e. with 7% silicon in the ceramer, the flexural strength is enhanced by 100% and flexural modulus value by 40% as compared to that of pure resorcinol-formaldehyde resin matrix composites.

  • PDF

Energy absorption investigation of square CFRP honeycomb reinforced by PMI foam fillers under quasi-static compressive load

  • Zhou, Hao;Guo, Rui;Bao, Kuo;Wei, Haiyang;Liu, Rongzhong
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.837-847
    • /
    • 2019
  • A type of hybrid core made up of thin-walled square carbon fiber reinforced polymer (CFRP) honeycomb and Polymethacrylimide (PMI) foam fillers was proposed and prepared. Numerical model of the core under quasi static compression was established and validated by corresponding experimental results. The compressive properties of the core with different configurations were analyzed through numerical simulations. The effect of the geometrical parameters and foam fillers on the compressive response and energy absorption of the core were analyzed. The results show that the PMI foam fillers can significantly improve the compressive strength and energy absorption capacity of the square CFRP honeycomb. The geometrical parameters have marked effects on the compressive properties of the core. The research can give a reference for the application of PMI foam materials in energy absorbing structures and guide the design and optimization of lightweight and energy efficient cores of sandwiches.

Fabrication and Characterization of PIN-Preamplifier Module for High Speed Optical Receiver (고속 광통신용 PIN-전치증폭기 수광모듈 제작 및 특성 측정)

  • 윤태열;박경현;송민규;황인덕;윤태열;유지범;정종민
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.333-339
    • /
    • 1994
  • We fabricated a single mode fiber pigtailed PIN-preamplifier front-end receiver module for the high speed optical receiver. Hybrid method was used to integrate GaInAs PIN photodiode and transimpedance type GaAs preamplifier. The capacitance and the diameter of light receiving area of PIN photodiode were 0.35 pF and $20{\mu}m$ respectively. The -3 dB cut-off frequency of PIN-preamplifier module was above 2 GHz, and the sensitivity of the module at 2.5 Gbps NRZ $(PRBS=2^{23}-1)$ signal was -25.2 dBm at $10^{-9}$ BER. > BER.

  • PDF

A Study on the Development of a Hybrid Fiber Reinforced Composite for a Type 4 CNG Vessel (CNG용 Type 4 하이브리드 섬유 복합재 용기 개발에 대한 연구)

  • Cho, Sung-min;Cho, Min-sik;Jung, Geunsung;Lee, Sun-kyu;Lee, Seung-kuk;Park, Ki-dong;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.97-103
    • /
    • 2017
  • The objective of this study is to develop and commercialize an on-board fuel storage system for CNG vehicles. A type 4 vessel is made of resin-impregnated continuous filament windings on a polyamide (PA6) liner. In particular, this study localized the PA6 liner's fabrication and development. To analyze the filament winding, a specimen test was performed, and the results were verified values obtained using finite element analysis. In this study, the filament winding and fibers were optimized for a 207 bar composite cylinder in a compressed natural gas vehicle.