• Title/Summary/Keyword: Hybrid Fiber

Search Result 772, Processing Time 0.025 seconds

Development of Bioreactors for Enrichment of Chemolithotrophic Methanogen and Methane Production (독립영양형 메탄생산세균의 농화 및 메탄생산 반응기의 개발)

  • Na, Byung-Kwan;Hwang, Tae-Sik;Lee, Sung-Hun;Ju, Dong-Hun;Sang, Byung-In;Park, Doo-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.1
    • /
    • pp.52-57
    • /
    • 2007
  • A gas-circulating bioreactor was used for enrichment of autotrophic methanogens. Mixture of hydrogen and carbon dioxide (5:1) was used as a sole energy and carbon source. Anaerobic digestive sludge isolated from wastewater treatment system was inoculated into the gas-circulating bioreactor. The enrichment of two chemolithotrophic methanogens, Methanobacterium curvum and Methanobacterium oryzae was accomplished in the gas-circulating bioreactor. The enriched bacteria were cultivated in a bioreactor equipped with hollow-fiber hydrogen-supplying system (hollow-fiber bioreactor), and a hybrid-type bioreactor equipped with hollow-fiber hydrogen-supplying system and electrochemical redox control system. The methane productivity was maximally 30% (V/V) in the hollow-fiber bioreactors and 50% (V/V) in the hybrid-type bioreactor.

Evaluation of Bond Strength for FRP Hybrid Bar According to Coating Methods using Silica Sands (규사 코팅 방법에 따른 FRP Hybrid Bar의 부착강도 평가)

  • Jung, Kyu-San;Park, Ki-Tae;You, Young-Jun;Seo, Dong-Woo;Kim, Byeong-Cheol;Park, Joon-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.118-125
    • /
    • 2017
  • In this study, we examined the bond performance of FRP Hybrid Bars. FRP Hybrid Bars are developed by wrapping glass fibers on the outside of deformed steel rebars to solve the corrosion problem. The surface of the FRP Hybrid Bars was coated with resin and silica sand to enhance its adhesion bonding performance with concrete. Various parameters, such as the resin type, viscosity, and size of the silica sand, were selected in order to find the optimal surface condition of the FRP Hybrid Bars. For the bonding test, FRP Hybrid Bars were embedded in a concrete block with a size of 200 mm3 and the maximum load and slip were measured at the interface between the FRP Hybrid Bar and concrete through the pull-out test. From the experimental results, the maximum load and bond strength were calculated as a function of each experimental variable and the resin type, viscosity and size of the silica sand giving rise to the optimal bond performance were evaluated. The maximum bond strength of the specimen using epoxy resin and No. 5 silica sand was about 35% higher than that of the deformed rebar.

Investigation of Sound Pressure Detection of Fiber Optic Sensor in Transformer Oil According to TLS and CW Laser Source (TLS와 CW 광원에 따른 트랜스포머 오일 내에서 광섬유 센서의 음압 감지 특성 연구)

  • Lee, Jong-Kil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.1
    • /
    • pp.33-41
    • /
    • 2011
  • To substitute TLS in the hybrid system which is combined with Sagnac interferometer and fiber bragg grating (FBG) it is necessary to investigate how the laser source (TLS and CW) and sensor material variate the response of fiber optic sensor. Two different hollow cylinder type mandrel materials are proposed which are PTFE and PTFE+carbon and 18 m optical fiber is wounded at the mandrel surface. CW laser source experiments had been done in the oil tank which is filled with transformer oil in the 1 kHz~20 kHz frequency range. Also Sagnac interferometer fiber optic sensor is combined with FBG called hybrid system and TLS used as a light source. Based on the experimental results PTFE sensor showed more higher magnitude of detection signal rather than carbon sensor and this result is agreement with the McMahon's theoretical results. Phase variation is inversely proportional to the elastic modulus of the mandrel material. In PTFE fiber sensor, tunable laser source showed more higher performance rather than CW case. Therefore, TLS fiber optic sensor can be applied to the hybrid system which is combined with Sagnac and FBG.

A Study on the Atmospheric Pressure Control of the VARTM Process for Increasing the Fiber Volume Fraction and Reducing Void (섬유부피분율 증가와 공극 감소를 위한 VARTM 공정의 대기압 제어에 관한 연구)

  • Kwak, Seong-Hun;Kim, Tae-Jun;Tak, Yun-Hak;Kwon, Sung-Il;Lee, Jea-Hyun;Kim, Sang-Yong;Lee, Jong-Cheon
    • Composites Research
    • /
    • v.34 no.2
    • /
    • pp.88-95
    • /
    • 2021
  • VARTM (Vacuum-assisted resin transfer molding) process is a low-cost process technology and affiliated with OoA (Out of Autoclave). Besides, it has been widely used in various fields. However, because of its lower quality than the autoclave process, it isn't easy to apply the VARTM process to the aerospace industry, which requires high reliability. The main problem of the VARTM process is the loss of mechanical properties due to the low fiber volume fraction and high void content in comparison to the autoclave. Therefore, many researchers have studied to reduce void and increase fiber volume fraction. This study examines whether the method of controlling atmospheric pressure could increase the fiber volume fraction and reduce void during the resin impregnation process. Reliability evaluation was confirmed by compressive strength test, fiber volume fraction analysis, and optical microscopy. As a result, it was confirmed that increasing the atmospheric pressure step by step in the VARTM process of impregnating the preform with resin effectively increases the fiber volume fraction and reduces void.

Experimental Investigation on the Blast Resistance of Fiber-Reinforced Cementitious Composite Panels Subjected to Contact Explosions

  • Nam, Jeongsoo;Kim, Hongseop;Kim, Gyuyong
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.1
    • /
    • pp.29-43
    • /
    • 2017
  • This study investigates the blast resistance of fiber-reinforced cementitious composite (FRCC) panels, with fiber volume fractions of 2%, subjected to contact explosions using an emulsion explosive. A number of FRCC panels with five different fiber mixtures (i.e., micro polyvinyl alcohol fiber, micro polyethylene fiber, macro hooked-end steel fiber, micro polyvinyl alcohol fiber with macro hooked-end steel fiber, and micro polyethylene fiber with macro hooked-end steel fiber) were fabricated and tested. In addition, the blast resistance of plain panels (i.e., non-fiber-reinforced high strength concrete, and non-fiber-reinforced cementitious composites) were examined for comparison with those of the FRCC panels. The resistance of the panels to spall failure improved with the addition of micro synthetic fibers and/or macro hooked-end steel fibers as compared to those of the plain panels. The fracture energy of the FRCC panels was significantly higher than that of the plain panels, which reduced the local damage experienced by the FRCCs. The cracks on the back side of the micro synthetic fiber-reinforced panel due to contact explosions were greatly controlled compared to the macro hooked-end steel fiber-reinforced panel. However, the blast resistance of the macro hooked-end steel fiber-reinforced panel was improved by hybrid with micro synthetic fibers.

Electromagnetic Interference Shielding Effectiveness of Fiber Reinforced Composites Hybrid Conductive Filler (하이브리드 전도성 Filler 섬유강화 복합재료의 전자파 차폐효과)

  • Han, Gil-Young;Song, Dong-Han;Bae, Ji-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.35-39
    • /
    • 2009
  • The main objective of this study was to investigate fiber reinforced composite materials (FRCM) with electromagnetic shielding characteristics using aluminum (Al) film and copper (Cu) meshes. This study investigated the electromagnetic interference (EMI) shielding effectiveness (SE) of fiber reinforced composites filled with Al film, Cu meshes, and nano carbon black as hybrid conductive fillers to provide the electromagnetic shielding property of the fiber reinforced composites. The coaxial transmission line method of ASTM D 4935-89 was used to measure the EMI shielding effectiveness of composites in the frequency range of 300 MHz to 1.5 GHz. The variations of SE of FRCM with Al film, fine Cu, and general Cu meshes are described. The results indicate that the FRCM having Al film exhibited up to 75 dB of SE at 1.5 GHz.

Optimal Mix Proportion of Steel Fiber and Hybrid Fiber Reinforced Concrete Using Harmony Search (화음탐색법을 이용한 강섬유 및 하이브리드 섬유보강 콘크리트의 최적배합 설계)

  • Lee, Chi-Hoon;Lee, Joo-Ha;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.280-283
    • /
    • 2004
  • Today, the guide line of the SFRC mix design and the construction was not embodied, and the convenience of the practical application on the spot is not good. In this research, hence, the program which is optimized to result the mix proportion by the flexural strength and toughness, was developed to apply with ease SFRC on the practical spot. This program would minimize the number of trial mixes and achieve an economical and appropriate mixture. In addition, the theoretical background on which the program is based, will be the basis of the embodied method to mixing SFRC. New algorithm, in this research, was used to develop the mix proportioning program of SFRC. The new algorithm is the Harmony Search which is the heuristic method mimicking the improvisation of music players. And, beside to single fiber reinforced concrete, it was developed the program about the hybrid fiber reinforced concrete that two kinds of steel fibers, which have the different geometry, was reinforced. This will be able to keep the world trend to study, hence, offers the basis of the next generation research.

  • PDF

The Strain Evaluation of the Notch tip Area for the CFRP/GFRP Hybrid Laminate Plate using the SENT Specimen (SENT시험편을 이용한 CFRP/GFRP 하이브리드 적층재의 노치선단부 변형률 평가)

  • Kang, Ji Woong
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.5
    • /
    • pp.15-21
    • /
    • 2014
  • The aim of this work is conduct the study on light weight and structural performance improvement of the composite wind power blade. GFRP (Glass Fiber Reinforced Plastic) pre-empted by CFRP(Carbon Fiber Reinforced Plastic), the major material of wind power blade, was identified the superiority of mechanical performance through the tensile and fatigue test. SENT(Single Edge Notched Tension) specimen fracture test was conducted on the specimen that laminated together 2 ply CFRP with 4 ply GFRP through DIC(Digital Image Correlation) analysis. The SENT specimen thickness and $a_0/W$ ratio is 1.45 mm and 0.2, respectively. The fracture test accomplished with displacement control with 0.1 mm/min at the room temperature. The experimental apparatus used for the fracture test consisted of a 50kN universal dynamic tester and CCD camera connected to a personal computer (PC), which was used to record images of the specimen surface. Following data acquisition, the images and load-displacements were transferred to the PC, on which the DIC software was implement. The experiment and DIC analysis results show that CFRP/GFRP laminated composite exhibits improvement of the strength, compared with that of the existing blade material. This study shows the result that the strength of CFRP rotor blade of wind turbine satisfies through the experimental and DIC method.

System Development of Removing Dust and Odor from Manufacturing Process of FRP Products (FRP제품 가공시 발생하는 분진 및 악취 제거 시스템 개발)

  • Yun, Huy Kwan;Kim, Jae Yong
    • Applied Chemistry for Engineering
    • /
    • v.20 no.5
    • /
    • pp.547-552
    • /
    • 2009
  • When fiber reinforced plastics (FRP) products are manufactured, dust and odor materials are inevitably generated in a workplace. To improve the bad condition of the workshop, we developed the Hybrid Bag Filter attached activated carbon fiber (ACF) and installed the system at two companies producing FRP goods. In order to raise the efficiency of dust collection, we set the ducts both on the ceiling and at the bottom of the wall and according to the circumstances of the workshop's space, moving dust collector also adopted as a different type of flexible duct. Pulse Jet Type Bag Filter is also equipped to operate the system more effectively, for the improved fine environment because of high dust removal efficiency. Finally, we investigated the removal tendency of the dust and odor when operating the System of Hybrid Bag Filter.

Effectiveness of steel fibers in ultra-high-performance fiber-reinforced concrete construction

  • Dadmand, Behrooz;Pourbaba, Masoud;Sadaghian, Hamed;Mirmiran, Amir
    • Advances in concrete construction
    • /
    • v.10 no.3
    • /
    • pp.195-209
    • /
    • 2020
  • This study investigates the behavior of ultra-high-performance fiber-reinforced concrete (UHPFRC) with hybrid macro-micro steel and macro steel-polypropylene (PP) fibers. Compression, direct and indirect tension tests were carried out on cubic and cylindrical, dogbone and prismatic specimens, respectively. Three types of macro steel fibers, i.e., round crimped (RC), crimped (C), and hooked (H) were combined with micro steel (MS) and PP fibers in overall ratios of 2% by volume. Additionally, numerical analyses were performed to validate the test results. Parameters studied included, fracture energy, tensile strength, compressive strength, flexural strength, and residual strength. Tests showed that replacing PP fibers with MS significantly improves all parameters particularly flexural strength (17.38 MPa compared to 37.71 MPa). Additionally, the adopted numerical approach successfully captured the flexural load-deflection response of experimental beams. Lastly, the proposed regression model for the flexural load-deflection curve compared very well with experimental results, as evidenced by its coefficient of correlation (R2) of over 0.90.