• Title/Summary/Keyword: Hybrid Energy System

Search Result 1,002, Processing Time 0.032 seconds

An Analysis of Idling Stop Time Using Real On-road Driving Data (실도로 주행 데이터를 이용한 공회전 정지 시간의 분석)

  • Hong, Seong-Tae;Lee, Beom-Ho;Lee, Dae-Yeop;Sim, Mu-Gyeong;Im, Jae-Myeong
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.1
    • /
    • pp.25-38
    • /
    • 2010
  • In this study, the real on-road driving data were analyzed to draw the various characteristics related to idling of vehicles. The results revealed that the average idling time of a city bus corresponds to 30.9% of the total daily driving time. Among this, for about 21.6% of the total daily driving time, it is available that an engine can be halted while the vehicle stops. It is a daytime when the portion of time, for which idling stop is available, is peak. Due to idling stop, an increase of turnaround was not found throughout this analysis. When a city bus stops at a traffic right, idling periods were long enough to execute the idling stop, during which an engine halts. Whereas, during the idling time for bus stops, the idling periods were not so long enough to execute idling stop. Deceleration periods among the total turnarounds of a city bus occupies about 24.7%, during which, for about 30%, a deceleration maintains for more than four seconds. Thus, using the energy during deceleration period, which then can be recovered from braking energy, it was also found that a hybrid system can be effectively implemented to a city bus.

Simulation study on effects of loading rate on uniaxial compression failure of composite rock-coal layer

  • Chen, Shao J.;Yin, Da W.;Jiang, N.;Wang, F.;Guo, Wei J.
    • Geomechanics and Engineering
    • /
    • v.17 no.4
    • /
    • pp.333-342
    • /
    • 2019
  • Geological dynamic hazards during coal mining can be caused by the failure of a composite system consisting of roof rock and coal layers, subject to different loading rates due to different advancing velocities in the working face. In this paper, the uniaxial compression test simulations on the composite rock-coal layers were performed using $PFC^{2D}$ software and especially the effects of loading rate on the stress-strain behavior, strength characteristics and crack nucleation, propagation and coalescence in a composite layer were analyzed. In addition, considering the composite layer, the mechanisms for the advanced bore decompression in coal to prevent the geological dynamic hazards at a rapid advancing velocity of working face were explored. The uniaxial compressive strength and peak strain are found to increase with the increase of loading rate. After post-peak point, the stress-strain curve shows a steep stepped drop at a low loading rate, while the stress-strain curve exhibits a slowly progressive decrease at a high loading rate. The cracking mainly occurs within coal, and no apparent cracking is observed for rock. While at a high loading rate, the rock near the bedding plane is damaged by rapid crack propagation in coal. The cracking pattern is not a single shear zone, but exhibits as two simultaneously propagating shear zones in a "X" shape. Following this, the coal breaks into many pieces and the fragment size and number increase with loading rate. Whereas a low loading rate promotes the development of tensile crack, the failure pattern shows a V-shaped hybrid shear and tensile failure. The shear failure becomes dominant with an increasing loading rate. Meanwhile, with the increase of loading rate, the width of the main shear failure zone increases. Moreover, the advanced bore decompression changes the physical property and energy accumulation conditions of the composite layer, which increases the strain energy dissipation, and the occurrence possibility of geological dynamic hazards is reduced at a rapid advancing velocity of working face.

Optimization of Hybrid Process of(Chemical Coagulation, Fenton Oxidation and Ceramic Membrane Filtration) for the Treatment of Reactive Dye Solutions (반응성 염료폐수 처리를 위한 화학응집, 펜톤산화, 세라믹 분리막 복합공정의 최적화)

  • Yang, Jeong-Mok;Park, Chul-Hwan;Lee, Byung-Hwan;Kim, Tak-Hyun;Lee, Jin-Won;Kim, Sang-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.257-264
    • /
    • 2006
  • This study investigated the effects of hybrid process(chemical coagulation, Fenton oxidation and ceramic UF(ultrafiltration)) on COD and color removals of commercial reactive dyestuffs. In the case of chemical coagulation, the optimal concentrations of $Fe^{3+}$ coagulant for COD and color removals of RB49(reactive blue 49) and RY84(reactive yellow 84) were determined according to the different coagulant dose at the optimal pH. They were 2.78 mM(pH 7) in RB49 and 1.85 mM(pH 6) in RY84, respectively. In the case of Fenton oxidation, the optimal concentrations of $Fe^{3+}\;and\;H_2O_2$ were obtained. Optimal $[Fe^{2+}]:[H_2O_2]$ molar ratio of COD and color removals of RB49 and RY84 were 4.41:5.73 mM and 1.15:0.81 mM, respectively. In the case of ceramic UF, the flux and rejection of supernatant after Fenton oxidation were investigated. After ceramic UF for 9 hr, the average flux of RB49 and RY84 solutions were $53.4L/m^2hr\;and\;67.4L/m^2hr$ at 1 bar, respectively. In addition, the permeate flux increased and the average flux recovery were 98.5-99.9%(RB49) and 91.0-97.3%(RY84) according to adopting off-line cleaning(5% $H_2SO_4$). Finally, COD and color removals were 91.6-95.7% and 99.8% by hybrid process, respectively.

Heavy concrete shielding properties for carbon therapy

  • Jin-Long Wang;Jiade J Lu;Da-Jun Ding;Wen-Hua Jiang;Ya-Dong Li;Rui Qiu;Hui Zhang;Xiao-Zhong Wang;Huo-Sheng Ruan;Yan-Bing Teng;Xiao-Guang Wu;Yun Zheng;Zi-Hao Zhao;Kai-Zhong Liao;Huan-Cheng Mai;Xiao-Dong Wang;Ke Peng;Wei Wang;Zhan Tang;Zhao-Yan Yu;Zhen Wu;Hong-Hu Song;Shuo-Yang Wei;Sen-Lin Mao;Jun Xu;Jing Tao;Min-Qiang Zhang;Xi-Qiang Xue;Ming Wang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2335-2347
    • /
    • 2023
  • As medical facilities are usually built at urban areas, special concrete aggregates and evaluation methods are needed to optimize the design of concrete walls by balancing density, thickness, material composition, cost, and other factors. Carbon treatment rooms require a high radiation shielding requirement, as the neutron yield from carbon therapy is much higher than the neutron yield of protons. In this case study, the maximum carbon energy is 430 MeV/u and the maximum current is 0.27 nA from a hybrid particle therapy system. Hospital or facility construction should consider this requirement to design a special heavy concrete. In this work, magnetite is adopted as the major aggregate. Density is determined mainly by the major aggregate content of magnetite, and a heavy concrete test block was constructed for structural tests. The compressive strength is 35.7 MPa. The density ranges from 3.65 g/cm3 to 4.14 g/cm3, and the iron mass content ranges from 53.78% to 60.38% from the 12 cored sample measurements. It was found that there is a linear relationship between density and iron content, and mixing impurities should be the major reason leading to the nonuniform element and density distribution. The effect of this nonuniformity on radiation shielding properties for a carbon treatment room is investigated by three groups of Monte Carlo simulations. Higher density dominates to reduce shielding thickness. However, a higher content of high-Z elements will weaken the shielding strength, especially at a lower dose rate threshold and vice versa. The weakened side effect of a high iron content on the shielding property is obvious at 2.5 µSv=h. Therefore, we should not blindly pursue high Z content in engineering. If the thickness is constrained to 2 m, then the density can be reduced to 3.3 g/cm3, which will save cost by reducing the magnetite composition with 50.44% iron content. If a higher density of 3.9 g/cm3 with 57.65% iron content is selected for construction, then the thickness of the wall can be reduced to 174.2 cm, which will save space for equipment installation.

Morphology Control of Nanostructured Graphene on Dielectric Nanowires

  • Kim, Byeong-Seong;Lee, Jong-Un;Son, Gi-Seok;Choe, Min-Su;Lee, Dong-Jin;Heo, Geun;Nam, In-Cheol;Hwang, Seong-U;Hwang, Dong-Mok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.375-375
    • /
    • 2012
  • Graphene is a sp2-hybridized carbon sheet with an atomic-level thickness and a wide range of graphene applications has been intensely investigated due to its unique electrical, optical, and mechanical properties. In particular, hybrid graphene structures combined with various nanomaterials have been studied in energy- and sensor-based applications due to the high conductivity, large surface area and enhanced reactivity of the nanostructures. Conventional metal-catalytic growth method, however, makes useful applications difficult since a transfer process, used to separate graphene from the metal substrate, should be required. Recently several papers have been published on direct graphene growth on the two dimensional planar substrates, but it is necessary to explore a direct growth of hierarchical nanostructures for the future graphene applications. In this study, uniform graphene layers were successfully synthesized on highly dense dielectric nanowires (NWs) without any external catalysts. We also demonstrated that the graphene morphology on NWs can be controlled by the growth parameters, such as temperature or partial pressure in chemical vapor deposition (CVD) system. This direct growth method can be readily applied to the fabrication of nanoscale graphene electrode with designed structures because a wide range of nanostructured template is available. In addition, we believe that the direct growth growth approach and morphological control of graphene are promising for the advanced graphene applications such as super capacitors or bio-sensors.

  • PDF

An Analysis on the Educational Needs for the Smart Farm: Focusing on SMEs in Jeon-nam Area (중소·중견기업의 스마트팜 교육 수요 분석: 전남지역을 중심으로)

  • Hwang, Doo-hee;Park, Geum-Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.649-655
    • /
    • 2020
  • This study determined effective educational strategies by investigating and analyzing the related educational demands for SMEs (small and medium-sized enterprises) in the 4th Industrial Revolution based area of smart farms. In order to derive the approprate educational strategies, Importance-Performance Analysis (IPA) and Borich's Needs Assessment Model were conducted based on the smart farm technological field. As a result, the education demand survey showed high demand for production systems and intelligent farm machinery. In detail, Borich's analysis showed the need for pest prevention and diagnosis technology (8.03), network and analysis SW linkage technology (7.83), and intelligent farm worker-agricultural power system-electric energy hybrid technology (7.43). In contrast, smart plant factories (4.09), lighting technology for growth control (4.46) and structure construction technology (4.62) showed low demands. Based on this, the IPA portfolio shows that the network and analysis SW linkage technology and the CAN-based complex center are urgently needed. However, the technology that has already been developed, such as smart factory platform development, growth control lighting technology and structure construction technology, was oversized. Based on these results, it is possible to strategically suggest the customized training programs for industrial sectors of SMEs that reflect the needs for efficiently operating smart farms. This study also provides effective ways to operate the relevant training programs.

The Experimental Assessment of Influence Factors on KLS-1 Microwave Sintering (한국형 인공월면토(KLS-1) 마이크로파 소결에 미치는 영향인자에 관한 실험적 연구)

  • Jin, Hyunwoo;Lee, Jangguen;Ryu, Byung Hyun;Shin, Hyu-Soung;Kim, Young-Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.2
    • /
    • pp.5-17
    • /
    • 2021
  • The Moon has been an attractive planet as an outpost for deep space exploration since He-3 and water ice which can be used as energy resources were discovered. In-Situ Resource Utilization (ISRU) construction material fabrication method is required for sustainable space planet exploration. In this paper, the possibility of microwave sintering technology for construction material fabrication was evaluated using lunar regolith that can be easily collected from the Moon surface. Experimental assessment of the influence factors on microwave sintering was conducted using a hybrid sintering system for efficient processing. The heat distribution in the furnace was observed using thermal paper that is coated with a material formulated to change color when exposed to heat. Based on this result, sintered cylindrical KLS-1s with a diameter of 1 cm and a height of 2 cm were fabricated. Densities were measured for the sintered KLS-1s under rotating turntable conditions that have an effect of microwave dispersion. The more dielectrics were arranged, the more microwaves were dispersed reducing the heat concentration, and thus a uniformity of sintered KLS-1s was enhanced.

Preparation and Evaluation of Hybrid Porous Membrane for the Application of Alkaline Water Electrolysis (알칼리 수전해 적용을 위한 하이브리드 다공성 격리막 제조 및 특성평가)

  • Han, Seong Min;Im, Kwang Seop;Jeong, Ha Neul;Kim, Do Hyeong;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.31 no.6
    • /
    • pp.443-455
    • /
    • 2021
  • In this study, polyphenylene sulfide (PPS) was used as a support and a separator was manufactured using polysulfone and inorganic additives to manufacture a separator with low membrane resistance for application of an alkali water electrolysis system, and then the effect on the thickness and porosity of the support was analyzed. The PPS felt used as a support was compressed with variables of temperature (100℃, 150℃, 200℃) and pressure (1 ton, 2 tons, 3 tons, 5 tons) to adjust the thickness. A porous separator could be manufactured by preparing a slurry with polysulfone using BaTiO3 and ZrO2 which have high hydrophilicity and excellent alkali resistance as inorganic particles and casting the slurry on a compressed PPS felt. Changes in morphology of the separator according to compression conditions were confirmed through an electron scanning microscope (SEM). After that, the porosity was calculated, and the thickness and porosity tended to decrease as the compression conditions increased. Various characteristics were evaluated to confirm whether it could be used as a separator for water electrolysis. As a result of measuring the mechanical strength, it was confirmed that the tensile strength gradually increased as the compression conditions (temperature and pressure) increased. Finally, it was confirmed that the porous separator manufactured through the alkali resistance test has excellent alkali resistance, and through the IV test, it was confirmed that the membranes compressed at 100℃ and 150℃ had a lower voltage and improved performance than the existing uncompressed membrane.

Optimum Dissolved Oxygen Level for the Growth of Tilapia in the Recirculating Water System (순환여과식사육장치에서 틸라피아의 성장을 위한 최적용존산소량)

  • KIM In-Bae;WOO Young-Bae
    • Journal of Aquaculture
    • /
    • v.1 no.1
    • /
    • pp.67-73
    • /
    • 1988
  • A growth experiment of tilapia (offsprings of the hybrid between Oreochromis niloticus and O. mossambicus) under different dissolved oxygen levels in the recirculating water system was conducted at the Fish Culture Experiment Station of the National Fisheries University of Pusan from February 4 to March 5, 1986. Six tanks with a capacity of $1.8m^3$ of water each were used under the same condition of water parameters except for dissolved oxygen levels which were designated to maintain at 1.5, 2.0, 2.5, 3.0, 3.5 and 4.0 mg/$\iota$. Each tank was stocked with 90 kg of fish each averaging 64 to 69 grams. The average water temperature during the course of the experiment was $22.5^{\circ}C$. The results obtained are summarized as follows: The food conversion efficiencies were very good, being 1.05-1.11 at 3.5, 3.0, 2.5 and 2.0 mg/$\iota$ DO levels without any significant differences among them, but at 4.0 mg/$\iota$ the F. C. was 1.39 and at 1.5 mg/$\iota$ it was 1.61 being very poor compared with the others. The daily growth rate performance was best at 3.5 mg/$\iota$ dissolved oxygen level followed by 3.0 and 2.5 mg/$\iota$ with slight differences while at 4.0 and 2.0 mg/$\iota$ DO levels the growths were significantly poor, and at 1.5 mg/$\iota$ DO level it was extremely poor. In 1.5 mg/$\iota$ group, the fish did not accept feed vigorously and after feeding the fish usually concentrated around the inflow point showing oxygen deficiency response. While at 4.0 mg/$\iota$ high feeding rates tended to waste significant amounts of feed while eating and led to water deterioration, and above these levels the results is considered to lead to a waste of energy with uneconomical performance. On the other hand, at and below 2.0 mg/$\iota$ DO level the tilapia certainly showed a poor growth performance. The experiment indicates that the DO range of 2.5$\~$3.5 mg/$\iota$ is the optimum level for the good growth performance.

  • PDF

Effect of Planting Date and Hybrid on the Agronomic Characteristics, Forage Production and Feed Value of Corn for Silage (파종시기 및 품종이 사일리지용 옥수수의 생육특성, 사초생산성 및 사료가치에 미치는 영향)

  • Bae, Myeong Jin;Chung, Sung Heon;Kim, Jong Duk
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.1
    • /
    • pp.54-60
    • /
    • 2022
  • The planting date of corn for silage has been delayed because of spring drought and double cropping system in Korea. This experiment was conducted to evaluate agronomic characteristics, forage production and feed value of corn at April and May in 2019. Experimental design was a split-plot with three replications. Planting dates (12 April and 10 May) were designated to the main plot, and corn hybrids ('P0928', 'P1543' and 'P2088') to the subplot. The silking days of the early planting date (12 April) was 79 days and that of the late planting date (10 May) was 66 days (p<0.0001), however, there were no significant differences among the corn hybrids. Ear height of the late planting date was higher than that of the early planting (p<0.05), while there were no significant differences in plant height of corn. Insect resistance at the early planting was lower than that of late planting (p<0.05), however, lodging resistance was no significant difference at planting date. The rice black streaked virus (RBSDV) infection of early planting was 3.7% and that of late planting was 0.3% (p<0.001). Dry matter (DM) contents of stover, ear and whole plant had significant difference at planting date (p<0.05). And differences in ear percentages were observed among the corn hybrids (p<0.01). And ear percentages of early maturing corn ('P0928') was higher than for other hybrids. Ear percentage at the early planting date was higher than that at the late planting date (p<0.01). DM and total digestible nutrients (TDN) yields had significant difference at planting date, however, there were no significant differences among the corn hybrids. DM and TDN yields at the late planting (21,678 kg/ha and 14,878 kg/ha) were higher than those of the early planting (13,732 kg/ha and 9,830 kg/ha). Crude protein content at the early planting date was higher than that of the late planting. Acid detergent fiber content of the late planting was lower than that of the early planting date (p<0.01), while there were no significant neutral detergent fiber content difference among the corn tested. Calculated net energy for lactation (NEL) and TDN at the early planting were higher than those of at the late planting (p<0.01). Results of this our study indicate that the late planting date (May) is better than early planting date (April) in forage yield and feed value of corn. Therefore, the delay of planting date by May was more suitable for use in cropping system.