• Title/Summary/Keyword: Hybrid Electric vehicle

Search Result 439, Processing Time 0.029 seconds

Numerical Analysis of Electromagnetic Radiation Characteristics by High Voltage and General Cables for Fuel Cell Electric Vehicle (FCEV) (수소 연료전지 차량용 고전압 케이블과 일반 케이블에 의한 차량 전자파 방사 특성 수치해석 연구)

  • Lee, Soon-Yong;Seo, Won-Bum;Lim, Ji-Seon;Choi, Jae-Hoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.2
    • /
    • pp.152-160
    • /
    • 2011
  • The electromagnetic characteristics of FCEVs (fuel cell electric vehicles) are much different from the existing combustion engine cars as well as hybrid, plug-in-hybrid, and pure electric vehicles due to the high voltage/current generated by a fuel cell stack which uses a compressed hydrogen gas reacted with oxygen. To operate fuel cell stack efficiently, BOP (Balance of Plant) which is consisted of many motors in water pump, air blower, and hydrogen recycling pump as well as inverters for these motors is essential. Furthermore, there are also electric systems for entertainment, information, and vehicle control such as navigation, broadcasting, vehicle dynamic control systems, and so on. Since these systems are connected by high voltage or general cables, EMC (Electromagnetic compatibility) analysis for high voltage and general cable of FCEV is the most important element to prevent the possible electric functional safety errors. In this paper, electromagnetic fields by high voltage and general cables for FCEVs is studied. From numerical analysis results, total time harmonic electromagnetic field strength from high voltage and general cables have difference of 13~16 dB due to ground effect by impedance matching. The EMI results of FECV at 10 m distance shows difference of 41 dB at 30 MHz and 54 dB at 230 MHz compared with only general cable routing.

Research on the Analysis and Improvement of the Performance of the Phase-Shifted Full-Bridge Converter for Electric Vehicle Battery Charger Applications (전기자동차 탑재형 충전기 응용에서 위상변조 풀브리지 컨버터 성능 분석과 그 개선에 관한 연구)

  • Lee, Il-Oun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.5
    • /
    • pp.479-490
    • /
    • 2015
  • The conventional phase-shifted full-bridge (PSFB) converter with an LC filter has been widely used for high-power applications of over 1.0 kW. However, the PSFB converter cannot obtain optimal power conversion efficiency during the battery charging in electric vehicle (EV) on-board battery charger applications because of its unique drawbacks, such as a large circulating current and very high voltage stress in the rectifier diodes. As a result, the converters with a capacitive filter, such as LLC resonant converters, replace the PSFB converter in the EV chargers. This study analyzes the problems of the PSFB converter for EV on-board charger applications in detail. Moreover, the newest converters based on the conventional PSFB converter are reviewed. On the basis of the reviews, new PSFB converter topologies are proposed for EV charger applications. The new topologies are formed by connecting the rectifier stage in the PSFB converter with the output of an LLC resonant converter in series. Many problems of the conventional PSFB converter for EV charger applications can be solved and the performance can be more improved because of this structure; this idea is confirmed by an experiment consisting of prototype battery chargers under the output voltage range of 250-450 Vdc at 3.3 kW.

An Experimental Study upon Modeling and Control of Coupled Engine and Generator System (엔진-발전기 시스템 모델링 및 제어특성에 관한 실험적 연구)

  • 송승호;정세종;오정훈;함윤영;최용각;이광희
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.163-169
    • /
    • 2003
  • Modeling of engine-generator system and its control responses are investigated using high performance generator controller. The nonlinear engine is modeled using mean torque production model based on experimental engine map. In case of diesel engine. the amount of injected fief is decided by engine controller depending on the APS(Acceleration Position Sensor) value. An electromechanical generator model contains electrical circuits and moment of inertia. The generator controller maximizes the performance of generator using decoupling and linearized current feedback control. The generator control system consists of 3-phase IGBT inverter and controller board based on 32 bit floating point DSP. Field oriented control algorithm with digital current feedback control at 10kHz sampling enabled high performance torque and speed control of induction machine. Not only the steady state but also the transient state responses can be evaluated through a batch test of the engine generator system. Developed engine and generator modeling and control can be utilized in various applications such as Series Hybrid Electric Vehicle(SHEV), engine-generator for emergency, and other hybrid generation systems.

Li-ion batteries, its applications and research trends

  • Lim, Jinsub
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.84.2-84.2
    • /
    • 2015
  • Growing market of electric vehicles such as hybrid, plug-in hybrid, and bare electric vehicles in the world is accelerating the significance of Li-ion batteries as a renewable green energy. According to such market flow, the developing components such as cathode, anode, electrolyte, and separator, composing the Li-ion batteries, is significantly important tasks for the commercialization. In particular, development of the cathode material having high capacity and stable thermal stability is essential for long-distance electric vehicle in the near future. Herein we introduce various applications of Li-ion batteries such as portable electronics, electric vehicles, and energy storage system, and also its research trend, in particular on the cathode materials.

  • PDF

An Analysis Study for Thermal Design of ISG (Integrated Starter & Generator) for Hybrid Electric Vehicle (하이브리드 차량용 ISG(Integrated Starter Generator)의 방열 설계를 위한 해석적 연구)

  • Kim, Dae Geon;Kim, Sung Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.120-127
    • /
    • 2013
  • Hybrid electric vehicles have applied electric parts for saving fuel consumption and reducing levels of environmental pollution. Electrification of automobiles is indispensable for entering into global market because of enhanced environment restriction. ISG (Integrated Starter & Generator) system is one of main electric parts and can improve fuel efficiency more than other components by using Idle Stop & Go function and regenerative braking system. However, if ISG motor and inverter work under the continuously high load condition, it will make them the decrease of performance and durability. So the ISG motor and inverter need to properly design the cooling system of them. In this study, we suggested the enhancement points by modifying the thermal design of ISG motor and then confirmed the improvement of the cooling performance.

Optimal Speed Control of Hybrid Electric Vehicles

  • Yadav, Anil Kumar;Gaur, Prerna;Jha, Shyama Kant;Gupta, J.R.P.;Mittal, A.P.
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.393-400
    • /
    • 2011
  • The main objective of this paper is to control the speed of Nonlinear Hybrid Electric Vehicle (HEV) by controlling the throttle position. Various control techniques such as well known Proportional-Integral-Derivative (PID) controller in conjunction with state feedback controller (SFC) such as Pole Placement Technique (PPT), Observer Based Controller (OBC) and Linear Quadratic Regulator (LQR) Controller are designed. Some Intelligent control techniques e.g. fuzzy logic PD, Fuzzy logic PI along with Adaptive Controller such as Self Organizing Controller (SOC) is also designed. The design objective in this research paper is to provide smooth throttle movement, zero steady-state speed error, and to maintain a Selected Vehicle (SV) speed. A comparative study is carried out in order to identify the superiority of optimal control technique so as to get improved fuel economy, reduced pollution, improved driving safety and reduced manufacturing costs.

Development of the Integrated Power Converter for the Environmentally Friendly Vehicle and Validation of the LDC using Battery HILS (친환경 자동차용 통합형 전력변환장치의 개발 및 배터리 HILS를 이용한 LDC 검증에 관한 연구)

  • Kim, Tae-Hoon;Song, Hyun-Sik;Lee, Baek-Haeng;Lee, Chan-Song;Kwon, Cheol-Soon;Jung, Do-Yang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1212-1218
    • /
    • 2014
  • For OBC (On-Board Charger) and LDC (Low DC-DC Converter) used as essential power conversion systems of PHEV (Plug-in Hybrid Electric Vehicle), system performance is required as well as reliability, which is need to protect the vehicle and driver from various faults. While current development processor is sufficient for embodying functions and verifying performance in normal state during development of prototypes for OBC and LDC, there is no clear method of verification for various fault situations that occur in abnormal state and for securing stability of vehicle base, unless verification is performed by mounting on an actual vehicle. In this paper, a CCM (Charger Converter Module) was developed as an integrated structure of OBC and LDC. In addition, diverse fault situations that can occur in vehicles are simulated by a simulator to artificially inject into power conversion system and to test whether it operates properly. Also, HILS (Hardware-in-the-Loop Simulation) is carried out to verify whether LDC is operated properly under power environment of an actual vehicle.

The development of forced fluid cooling induction motor for electric vehicle (전기자동차용 수냉식 유도전동기 개발)

  • Lee, K.J.;Kwon, J.L.;Kim, K.C.;Lee, J.I.;Lee, J.Y.;Kim, J.H.;Kim, Y.J.;Choi, G.J.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1015-1017
    • /
    • 2000
  • According to the importance of the earth environmental issues, the study of low emission vehicle is achieved actively throughout the world. It is studied for electric motor to be contented with the characteristics of electric and hybrid vehicles in this paper. It is represented for the result of design, analysis manufacture and test of the motor for electric vehicles.

  • PDF

Study of the Vibration and Shock Isolation for HEV Battery Pack (특수임무 차량 배터리 팩 진동/충격 저감 설계에 대한 연구)

  • Kim, Man-Dal;Jang, Duk-Jin;Lee, Sung-Jun;Hong, Seong-Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.10
    • /
    • pp.813-820
    • /
    • 2016
  • Hybrid Electric Vehicles (HEVs) are developed to be operated with two kinds of power source (Diesel Engine and Electric Motor with Rechargeable High Voltage Battery Pack). HEVs for military vehicle require high reliability to provide stable powers under serious environment such as vibration and shock. To ensure normal operation of battery pack under serious environment such as vibration and shock, the high voltage battery pack needs to have appropriate dynamic characteristics. This paper presents a design procedure for high voltage battery pack with such characteristics. An isolator design is proposed to reduce vibration and shock. Associated random vibration and shock response of the high voltage battery pack are simulated under conditions suggested by MIL specifications. Its dynamic characteristics and vibration and shock responses are validated with experiments.

Development of A Simulation Environment for An Efficient Combined Control Methodology of Fuel Cell Hybrid Electric Vehicles (연료전지 자동차 시스템의 효율적인 연계운전방법 개발을 위한 시뮬레이션 환경 구축)

  • Lee, Nam-Su;Shim, Seong-Yong;Ahn, Hyun-Sik;Kim, Do-Hyun;Seong, Yeong-Rak;Oh, Ha-Ryoung
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2367-2369
    • /
    • 2004
  • It is well known that an indirect methanol based fuel cell system imposes a performance limitation on the fuel cell electric vehicle (FCEV) due to the reformer lag. An optional battery system can be used together with fuel cell to improve this performance limitation and it is called a fuel cell hybrid electric vehicle (FCHEV) this paper first describes the configuration of FCHEV with explanation of the energy flow between subsystems. Mathematical modeling of each subsystem such as a fuel cell system, a battery system, a driving motor with the transmission are formulated and coded using Matlab/simulink software. It is illustrated by simulation results that fuel cell modeling yields appropriate stack voltage in order to get the required current quantity with varying hydrogen flow.

  • PDF