• Title/Summary/Keyword: Hybrid Dynamics

Search Result 273, Processing Time 0.028 seconds

A Study on Multi Pass Transmission System for a Flywheel Hybrid Vehicle (플라이휘일 하이브리드 차량의 다경로 동력전달장치 연구)

  • 송한림;김현수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.106-116
    • /
    • 1997
  • In this paper, using MATLAB SIMULINK, a generalized design methodology was suggested for multi pass transmission(MPT) by classifying the vehicle power train as prime mover, MPT and vehicle dynamics. This approach enables a designer to investigate the influence of each transmission component by simple combination of system components without changes of overall program. Using the design methodology, a MPT consisting of CVT, 2, clutches and reduction gears was designed for a braking energy regenerative flywheel hybrid vehicle. The CVT is essential in order to connect the engine and flywheel speed with the vehicle speed. For the purpose of smooth clutch operation, control algorithm was suggested by introducing dead zone for the clutch engagement. Using the SIMULINK model, performance of the flywheel hybrid vehicle with MPT was investigated. It was observed from the simulation results that the MPT vehicle showed better fuel economy, 47% than that of AT vehicle, 27% than that of CVT vehicle for ECE-15 driving cycle. Especially destinct fuel efficiency improvement was obtained for city driving cycle requiring more frequent stop and start.

  • PDF

VEHICLE DYNAMIC CONTROL ALGORITHM AND ITS IMPLEMENTATION ON CONTROL PROTOTYPING SYSTEM

  • Zhang, Y.;Yin, C.;Zhang, J.
    • International Journal of Automotive Technology
    • /
    • v.7 no.2
    • /
    • pp.167-172
    • /
    • 2006
  • A design of controller for vehicle dynamic control(VDC) and its implementation on the real vehicle were introduced. The controller has been designed using a three-degrees-of-freedom(3DOF) yaw plane vehicle, and the control algorithm was implemented on the vehicle by control prototyping system dSPACE. A hybrid control algorithm, which makes full use of the advantages of robust and fuzzy control, was adopted in the control system. Field test results show that the performance of the vehicle handling dynamics with hybrid controller is improved obviously compared to that without VDC and with simple robust controller on skiddy roads(friction coefficients lower than 0.3).

A Study on Diagnosing Fouling of Heat Exchangers of a Hybrid Heat Pump (하이브리드 열펌프 열교환기 오염 진단 연구)

  • Shin, Younggy
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.5
    • /
    • pp.240-246
    • /
    • 2014
  • A fault detector was developed for heat exchangers of a hybrid heat pump (HP) for household. The proposed detector can be applied directly to raw operating data. It is to monitor a tracking error between a measured saturation temperature and its state observer. The observer was estimated from a state-space model simulating dynamics of a heat exchanger. The real hybrid HP was substituted with a dynamic simulator that implemented two-phased heat transfer and was validated by experimental data. And artificial fault data were generated using the simulator. Diagnosing the data showed the following. The residual calculated from the state observer error shows a relatively robust consistency with respect fouling level. The fault detector is practically useful because it detects a threshold fouling beyond which the performance starts to deteriorate significantly.

INCORPORATING CONTEXT LEVEL VARIABLES TO IMPROVE OPERATION ANALYSIS IN STEEL FABRICATION SHOPS

  • Amin Alvanchi;SangHyun Lee;Simaan M. AbouRizk
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1053-1059
    • /
    • 2009
  • Construction system modeling can enhance work performance by following the behaviors of a system. System behaviors may originate from physical aspects of a system, namely operation level variables, or from non-physical aspects of a system known as context level variables. However, construction system modelers usually focus on only one type of system variable (i.e., operation level or context level) which can lead to less accurate results. Hybrid modeling with System Dynamics (SD) and Discrete Event Simulation (DES) is one of the approaches that has been utilized to address this issue. In this research, an SD-DES hybrid model of a steel fabrication shop is developed, and the benefits of capturing context level variables together with operation level variables in the model are discussed.

  • PDF

CFD Analysis of a Concept of Nuclear Hybrid Heat Pipe with Control Rod (원자로 제어봉과 결합된 하이브리드 히트파이프의 CFD 해석)

  • Jeong, Yeong Shin;Kim, Kyung Mo;Kim, In Guk;Bang, In Cheol
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.6
    • /
    • pp.109-114
    • /
    • 2014
  • After the Fukushima accident in 2011, it was revealed that nuclear power plant has the vulnerability to SBO accident and its extension situation without sufficient cooling of reactor core resulting core meltdown and radioactive material release even after reactor shutdown. Many safety systems had been developed like PAFS, hybrid SIT, and relocation of RPV and IRWST as a part of steps for the Fukushima accident, however, their applications have limitation in the situation that supply of feedwater into reactor is impossible due to high pressure inside reactor pressure vessel. The concept of hybrid heat pipe with control rod is introduced for breaking through the limitation. Hybrid heat pipe with control rod is the passive decay heat removal system in core, which has the abilities of reactor shutdown as control rod as well as decay heat removal as heat pipe. For evaluating the cooling performance hybrid heat pipe, a commercial CFD code, ANSYS-CFX was used. First, for validating CFD results, numerical results and experimental results with same geometry and fluid conditions were compared to a tube type heat pipe resulting in a resonable agreement between them. After that, wall temperature and thermal resistances of 2 design concepts of hybrid heat pipe were analyzed about various heat inputs. For unit length, hybrid heat pipe with a tube type of $B_4C$ pellet has a decreasing tendency of thermal resistance, on the other hand, hybrid heat pipe with an annular type $B_4C$ pellet has an increasing tendency as heat input increases.

Laser Microfabrication for Silicon Restrictor

  • Kim, Kwang-Ryul;Jeong, Young-Keun
    • Journal of Powder Materials
    • /
    • v.15 no.1
    • /
    • pp.46-52
    • /
    • 2008
  • The restrictor, which is a fluid channel from a reservoir to a chamber inside a thermal micro actuator, has been fabricated using ArF and KrF excimer lasers, Diode-Pumped Solid State Lasers (DPSSL) and femtosecond lasers for a feasibility study. A numerical model of fluid dynamics for the actuator chamber and restrictor is presented. The model includes bubble formation and growth, droplet ejection through nozzle, and dynamics of fluid refill through the restrictor from a reservoir. Since an optimized and well-fabricated restrictor is important for a high frequency actuator, some special beam delivery setups and post processing techniques have been researched and developed. The effects of variations of the restrictor length, diameter, and tapered shapes are simulated and the results are analyzed to determine the optimal design. The numerical results of droplet velocity and volume are compared with the experimental results of a cylindrical-shaped actuator. It is found that the micro actuators having tapered restrictors show better high frequency characteristics than those having a cylindrical shape without any notable decrease of droplet volume. The laser-fabricated restrictors demonstrate initial feasibility for the laser direct ablation technique although more development is required.

On the computation of low-subsonic turbulent pipe flow noise with a hybrid LES/LPCE method

  • Hwang, Seungtae;Moon, Young J.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.48-55
    • /
    • 2017
  • Aeroacoustic computation of a fully-developed turbulent pipe flow at $Re_{\tau}=175$ and M = 0.1 is conducted by LES/LPCE hybrid method. The generation and propagation of acoustic waves are computed by solving the linearized perturbed compressible equations (LPCE), with acoustic source DP(x,t)/Dt attained by the incompressible large eddy simulation (LES). The computed acoustic power spectral density is closely compared with the wall shear-stress dipole source of a turbulent channel flow at $Re_{\tau}=175$. A constant decaying rate of the acoustic power spectrum, $f^{-8/5}$ is found to be related to the turbulent bursts of the correlated longitudinal structures such as hairpin vortex and their merged structures (or hairpin packets). The power spectra of the streamwise velocity fluctuations across the turbulent boundary layer indicate that the most intensive noise at ${\omega}^+$ < 0.1 is produced in the buffer layer with fluctuations of the longitudinal structures ($k_zR$ < 1.5).

Structural Dynamics Modification of Structures Having Non-Conforming Nodes Using Component Mode Synthesis and Evolution Strategies Optimization Technique (부분 구조 모드 합성법 및 유전 전략 최적화 기법을 이용한 비부합 절점을 가진 구조물의 구조변경)

  • 이준호;정의일;박윤식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.651-659
    • /
    • 2002
  • Component Mode Synthesis (CMS) is a dynamic substructuring technique to get an approximate eigensolutions of large degree-of-freedom structures divisible into several components. But, In practice. most of large structures are modeled by different teams of engineers. and their respective finite element models often require different mesh resolutions. As a result, the finite element substructure models can be non-conforming and/or incompatible. In this work, A hybrid version of component mode synthesis using a localized lagrange multiplier to treat the non-conforming mesh problem was derived. Evolution Strategies (ESs) is a stochastic numerical optimization technique and has shown a robust performance for solving deterministic problems. An ESs conducts its search by processing a population of solutions for an optimization problem based on principles from natural evolution. An optimization example for raising the first natural frequency of a plate structure using beam stiffeners was presented using hybrid component mode synthesis and robust evolution strategies (RES) optimization technique. In the example. the design variables are the positions and lengths of beam stiffeners.

  • PDF

Simulations of Axisymmetric Transition Flow Regimes Using a CFD/DSMC Hybrid Method (CFD/DSMC 혼합해석기법을 이용한 축대칭 천이영역 유동 해석)

  • Choi, Young-Jae;Kwon, Oh-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.3
    • /
    • pp.169-176
    • /
    • 2019
  • In the present study, a CFD/DSMC hybrid method performed by a coupled analysis between the CFD method and the DSMC method was developed to obtain the flow information on the rarefied gas flows effectively. Flow simulations around the high speed vehicles on the transition flow regimes were conducted by using the developed method. The FRESH-FX vehicle made of cone and cylinder shapes was considered for the simulations. The results of the hybrid method were compared with the results of the pure CFD and the pure DSMC method to confirm the reliability and efficiency of the hybrid method. It was found that the gradient and the intensity of the shock waves were weakened due to the relatively low density on the transition flow regime. It was confirmed that the results of the hybrid analysis were different to those of the pure CFD analysis and almost identical to those of the pure DSMC analysis. In addition, the computational time of the hybrid method was reduced than that of the pure DSMC method. As a result, it was obtained that the validity and the efficiency of the CFD/DSMC hybrid method.

HLPSP: A Hybrid Live P2P Streaming Protocol

  • Hammami, Chourouk;Jemili, Imen;Gazdar, Achraf;Belghith, Abdelfettah;Mosbah, Mohamed
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.1035-1056
    • /
    • 2015
  • The efficiency of live Peer-to-Peer (P2P) streaming protocols depends on the appropriateness and the management abilities of their underlying overlay multicast. While a tree overlay structure confines transmission delays efficiently by maintaining deterministic delivery paths, an overlay mesh structure provides adequate resiliency to peers dynamics and easy maintenance. On the other hand, content freshness, playback fluidity and streaming continuity are still challenging issues that require viable solutions. In this paper, we propose a Hybrid Live P2P Streaming Protocol (HLPSP) based on a hybrid overlay multicast that integrates the efficiency of both the tree and mesh structures. Extensive simulations using OMNET++ are conducted to investigate the efficiency of HLPSP in terms of relevant performance metrics, and position HLPSP with respect to DenaCast the enhanced version of the well-known CoolStreaming protocol. Simulation results show that HLPSP outperforms DenaCast in terms of startup delay, end-to-end delay, play-back delay and data loss.