• Title/Summary/Keyword: Hybrid Cycle

Search Result 339, Processing Time 0.022 seconds

A Study on Regenerative OTEC System using the Condenser Effluent of Uljin Nuclear Power Plant (울진 원자력발전소 온배수를 이용한 재생식 해양온도차발전에 대한 연구)

  • Kang, Yun-Young;Park, Sung-Seek;Park, Yun-Beom;Kim, Nam-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.7
    • /
    • pp.591-597
    • /
    • 2012
  • For the past few years, the concern for clean energy has been greatly increased. Ocean thermal Energy Conversion(OTEC) power plants are studied as a viable option for the supply of clean energy. In this study, we examined the thermodynamic performance of the OTEC power system for the production of electric power. Computer simulation programs were developed under the same condition and various working fluids for closed Rankine cycle, regenerative cycle, Kalina cycle, open cycle, and hybrid cycle. The results show that the regenerative cycle showed the best system efficiency. And then we examined the thermodynamic performance of regenerative cycle OTEC power system using the condenser effluent from Uljin nuclear power plant instead of the surface water. The highest system efficiency of the condition was 4.55% and the highest net power was 181 MW.

UF pretreatment at elevated temperature within the scheme of hybrid desalination: Performance and environmental impact

  • Agashichev, Sergey;Kumar, Jayesh
    • Membrane and Water Treatment
    • /
    • v.8 no.3
    • /
    • pp.279-292
    • /
    • 2017
  • This study was aimed at ultrafiltration (UF) as a pretreatment before reverse osmosis (RO) within the scheme of hybrid reverse osmosis-multistage flush (RO-MSF) desalination. Seawater at elevated temperature (after MSF heat-exchangers) was used as a feed in this process. The pretreatment system was represented as a set of functionally-linked technological segments such as: UF filtration, backwashing, chemical- enhanced backwashing, cleaning, waste disposal, etc. The process represents the sequences of operating cycles. The cycle, in turn, consists of the following unit operations: filtration, backwashing and chemical-enhanced backwashing (CEB). Quantitative assessment was based on the following indicators: normalized permeability, transmembrane pressure, specific energy and water consumption, specific waste generation. UF pre-treatment is accompanied by the following waste streams: $W1=1.19{\times}10$ power of $-2m^3$ (disposed NaOCl with 0.0044% wt.)/$m^3$ (filtrate); $W2=5.95{\times}10$ power of $-3m^3$ (disposed $H_2SO_4$ with 0.052% wt.)/$m^3$(filtrate); $W3=7.26{\times}10$ power of $-2m^3$ (disposed sea water)/$m^3$ (filtrate). Specific energy consumption is $1.11{\times}10$ power of $-1kWh/m^3$ (filtrate). The indicators evaluated over the cycles with conventional (non-chemical) backwashing were compared with the cycles accompanied by CEB. A positive impact of CEB on performance indicators was demonstrated namely: normalized UF resistance remains unchanged within the regime accompanied by CEB, whereas the lack of CEB results in 30% of its growth. Those quantitative indicators can be incorporated into the target function for solving different optimization problems. They can be used in the software for optimisation of operating regimes or in the synthesis of optimal flow- diagram. The cycle characteristics, process parameters and water quality data are attached.

Design and Thermodynamic Analysis of Hybrid Tri-generation Gas Engine-Organic Rankine Cycle (하이브리드 Tri-generation 가스엔진-유기랭킨사이클 시스템의 설계 및 열역학적 해석)

  • Sung, Taehong;Yun, Eunkoo;kim, Hyun Dong;Choi, Jeong Hwan;Chae, Jung Min;Cho, Young Ah;Kim, Kyung Chun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.1
    • /
    • pp.79-87
    • /
    • 2015
  • In a gas engine, the exhaust and the engine cooling water are generated. The engine cooling water temperature is $100^{\circ}C$ and the exhaust temperature is $500^{\circ}C$. The amount of heat of engine cooling water is 43 kW and the amount of heat of exhaust is 21 kW. Eight different hybrid organic Rankine cycle (ORC) system configurations which considering different amount and temperature of waste heat are proposed for two gas engine tri-generation system and are thermodynamically analyzed. Simple system which concentrating two different waste heat on relatively low temperature engine cooling water shows highest thermal efficiency of 7.84% with pressure ratio of 3.67 and shaft power of 5.17 kW.

Power Distribution Strategy for Wireless Tram with Hybrid Energy Storage System (하이브리드 에너지 저장장치를 탑재한 무가선 트램의 전력분배전략)

  • Kang, Kyung-Jin;Oh, Yong-Kuk;Lee, Jee-Ho;Yeom, Min-Kyu;Kwak, Jae-Ho;Lee, Hyeong-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.11
    • /
    • pp.1615-1621
    • /
    • 2014
  • A wireless tram which runs without catenary and instead uses batteries installed in the tram has been recently researched actively. This paper presents a new method maximizing absorption of regenerative energy of a wireless tram and extending life cycle of the energy storage device in the wireless tram by applying line-optimized charging and discharging scenario. Energy efficiency and life cycle of energy storage system (ESS) are highly dependent on the characteristic of operating conditions. For example, frequent charge and discharge with high power cause the problems that decrease the battery life cycles. Hybrid energy storage system (HESS) is combination of two ESSs which have complementary characteristics to each other. HESS can provide even better functionality and performance than the battery only ESS due to the synergy effect of two ESSs. This paper also provides a power distribution strategy and driving scenarios which increase the life cycle and energy efficiency of the HESS consisting of a battery and an ultra-capacitor. The developed strategy was tested and verified by a hardware-in-the-loop-simulation (HILS) system which emulates the a wireless tram.

Thermal Behavior of Arrayed-Waveguide Grating Made of Silica/Polymer Hybrid Waveguide

  • Kim, Duk-Jun;Shin, Jang-Uk;Han, Young-Tak;Park, Sang-Ho;Park, Yun-Jung;Sung, Hee-Kyung;Kim, Dong-Kun
    • ETRI Journal
    • /
    • v.26 no.6
    • /
    • pp.661-664
    • /
    • 2004
  • The thermal behavior of an arrayed-waveguide grating made of a silica/polymer hybrid waveguide was examined. We experimentally confirmed that the hybrid waveguide is effective to decrease the temperature and polarization dependence of the center wavelength owing to the negative thermo-optic coefficient of the refractive index and extremely low baking temperature of the polymer cladding. However, the detachment of the polymer cladding from the silica core, which took place either during a repeated heat cycle test or during long-term storage in atmosphere, was a serious problem for practical use.

  • PDF

Performance Analysis of SOFC/MGT Hybrid System

  • Kim, Jae-Hwan;Suzuki, Kenjiro
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.703-707
    • /
    • 2001
  • A performance analysis of a SOFC/MGT hybrid system has been carried out for concept design. Thermo-dynamic models for each component being able to describe electrochemical characteristics and heat and mate-rial balance are proposed. Estimated is the power capacity of a SOFC suitable for the hybrid operation with a 5kW class MGT. Effects of current density and operating pressure are also investigated. Electric efficiency showed weak dependence on operating pressure and current density. It is desirable that the SOFC operates at high current density in manufacturing cost's point of view though operating with high current density slightly decreases the electric efficiency find specific power.

  • PDF

OPTIMAL TORQUE MANAGEMENT STRATEGY FOR A PARALLEL HYDRAULIC HYBRID VEHICLE

  • Sun, H.;Jiang, J.H.;Wang, X.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.791-798
    • /
    • 2007
  • The hydraulic hybrid vehicle(HHV) is an application of hydrostatic transmission technology to improve vehicle fuel economy and emissions. A relatively lower energy density of hydraulic accumulator and complicated coordinating operations between two power sources require a special energy management strategy to maximize the fuel saving potential. This paper presents a new type of configuration for parallel HHV to minimize the disadvantages of the hydraulic accumulator, as well as a methodology for developing an energy management strategy tailored specially for PHHV. Based on an analysis of the optimal energy distribution between two power sources over a representative urban driving cycle with a Dynamic Programming(DP) algorithm, a fuzzy-based optimal torque management strategy is designed and developed to control the torque distribution. Simulation results demonstrates that the optimal torque management strategy maximizes the advantages of this hybrid type of configuration, and the high power density characteristics of hydraulic technology effectively improve the robustness of the energy management strategy and fuel economy of the PHHV.

Research on Application of Functional Safety for Developing Combat Hybrid Electric Vehicles (하이브리드 전투차량의 기능안전성 적용 연구)

  • Chang, Kyogun;Lee, Yoon Bok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.543-549
    • /
    • 2012
  • Hybrid electric propulsion systems are expected as future primary combat platforms because the systems can supply enough electric power, easily locate components inside vehicles, and maneuver without undesired noise. However, increasing electric/electronic/software usage causes abnormal failure patterns which have not been noticeable in conventional automotive. Recently, the functional safety standard for road vehicles were enacted and vehicle manufacturers request their components which satisfy standardized quality. This research analyzes functional safety standards(IEC 61508 and ISO 26262) and compares the standards for road vehicles with military standards of system safety. Strategies to apply functional safety in the combat hybrid electric vehicle are scrutinized.

A 10kW Hybrid Converter for the Electric Vehicle Charge Application (전기자동차 충전기용 10kW 하이브리드 컨버터)

  • Tran, Dai-Duong;Yu, Sun-Ho;Vu, Hai-Nam;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.319-320
    • /
    • 2015
  • A hybrid converter for the on-board charger consisting of a soft switching full bridge (SSFB) and a half bridge (HB) LLC resonant converter is proposed. The proposed topology adopts an additional switch and a diode at the secondary side of SSFB converter to guarantee the wide ZVS range of primary side switches and to eliminate the circulating current. The output voltage is regulated by controlling the duty cycle of secondary side switch. The effectiveness of the proposed converter was experimentally verified using a 10-kW prototype circuit. The experimental results show 96.8% peak efficiency.

  • PDF

Charging Control of Wireless Charging System (무선충전시스템의 충전 제어 방식)

  • Shin, Han-Ho;Heo, Joon;Jeon, Seong-Jeub
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.4
    • /
    • pp.303-309
    • /
    • 2019
  • A hybrid control of a rectifier/regulator of wireless power transfer systems for electric vehicles is studied. A combined rectifier/regulator is used for charging control. The hybrid control comprises integral cycle control and pulse width modulation control to cope with the variations in the induced voltage due to clearance and alignment. The hybrid control has good control capability and does not cause severe switching loss. A 22 kW prototype of the Wireless Power Transfer class 4 charging system defined by the Society of Automotive Engineers is constructed and tested to verify the proposal.