• Title/Summary/Keyword: Hybrid Composite Materials

Search Result 488, Processing Time 0.028 seconds

Ceramic materials for chair side CAD/CAM (체어사이드 CAD/CAM에서 사용하는 세라믹 소재)

  • Kim, Heechul
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.23 no.1
    • /
    • pp.16-26
    • /
    • 2014
  • Materials that can be use in CAD/CAM are composite, ceramic, hybrid and metal. Among the available materials, monolithic ceramic technique which is the manufacturing technique using one type of the materials is mainly used in a dental office. It is the technique where final tooth-shaped prostheses are made from the material block and used after polishing or applying heat and that does not require traditional ceramic build-up process. Although shot of esthetic quality, because manufactured within 1 hour the monolithic ceramic technique has advantages such as that treatment can be completed in one day and in one time visit, that stability of the material is high because there are low possibility of distort by not melting and phase transformation, and that it can be easily worked in the office with computer assisted devices. We classified the materials that can be used in this technique based on their generations from clinical stand point.

Influence of hot-pressing pressure on the densification of short-carbon-fiber-reinforced, randomly oriented carbon/carbon composite

  • Raunija, Thakur Sudesh Kumar;Sharma, Sharad Chandra
    • Carbon letters
    • /
    • v.16 no.1
    • /
    • pp.25-33
    • /
    • 2015
  • The prime objective of this research was to study the influence of hot-pressing pressure and matrix-to-reinforcement ratio on the densification of short-carbon-fiber-reinforced, randomly oriented carbon/carbon-composite. Secondary objectives included determination of the physical and mechanical properties of the resulting composite. The 'hybrid carbon-fiber-reinforced mesophase-pitch-derived carbon-matrix' composite was fabricated by hot pressing. During hot pressing, pressure was varied from 5 to 20 MPa, and reinforcement wt% from 30 to 70. Densification of all the compacts was carried at low impregnation pressure with phenolic resin. The effect of the impregnation cycles was determined using measurements of microstructure and density. The results showed that effective densification strongly depended on the hot-pressing pressure and reinforcement wt%. Furthermore, results showed that compacts processed at lower hot-pressing pressure, and at higher reinforcement wt%, gained density gradually during three densification cycles and showed the symptoms of further gains with additional densification cycles. In contrast, samples that were hot-pressed at moderate pressure and at moderate reinforcement wt%, achieved maximum density within three densification cycles. Furthermore, examination of microstructure revealed the formation of cracks in samples processed at lower pressure and with low reinforcement wt%.

An efficient and novel strategy for control of cracking, creep and shrinkage effects in steel-concrete composite beams

  • Varshney, L.K.;Patel, K.A.;Chaudhary, Sandeep;Nagpal, A.K.
    • Structural Engineering and Mechanics
    • /
    • v.70 no.6
    • /
    • pp.751-763
    • /
    • 2019
  • Steel-concrete composition is widely used in the construction due to efficient utilization of materials. The service load behavior of composite structures is significantly affected by cracking, creep and shrinkage effects in concrete. In order to control these effects in concrete slab, an efficient and novel strategy has been proposed by use of fiber reinforced concrete near interior supports of a continuous beam. Numerical study is carried out for the control of cracking, creep and shrinkage effects in composite beams subjected to service load. A five span continuous composite beam has been analyzed for different lengths of fiber reinforced concrete near the interior supports. For this purpose, the hybrid analytical-numerical procedure, developed by the authors, for service load analysis of composite structures has been further improved and generalized to make it applicable for composite beams having spans with different material properties along the length. It is shown that by providing fiber reinforced concrete even in small length near the supports; there can be a significant reduction in cracking as well as in deflections. It is also observed that the benefits achieved by providing fiber reinforced concrete over entire span are not significantly more as compared to the use of fiber reinforced concrete in certain length of beam near the interior supports in continuous composite beams.

A CONFOCAL LASER SCANNING MICROSCOPIC STUDY ON THE INTERFACE BETWEEN TOOTH COLORED RESTORATIVE MATERIALS AND DENTIN (공초점레이저주사현미경을 이용한 심미수복재와 상아질의 접착계면에 관한 연구)

  • Park, Byung-Chul;Cho, Young-Gon;Moon, Joo-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.3
    • /
    • pp.313-320
    • /
    • 2000
  • The purpose of this study was to evaluate on the interfacial morphology between dentin and restorative materials. In this in vitro study, the cavity wall restorated with 3 different kinds of tooth colored restorative materials [resin-modified Glass Ionomer cement (Fuji II LC), composite resin (Z-100), compomer (Dyract)]. The thirty extracted human molar teeth without caries and/or restorations are used. The experimental teeth were randomly divided into three groups of ten teeth each. In each group, Wedge shaped cavities (width: 3mm, length: 2mm, depth: 1.5mm) were prepared at the cementoenamel junction on buccal and lingual surfaces. The adhesive of composite resin were mixed with rhodamine B. Primer of composite resin, Prime & Bond 2.1 of Dyract and liquid of Fuji II LC were mixed with fluorescein. In group 1, the cavity wall was treatment with dentin conditioner, and then restorated with Fuji II LC. In group 2, the cavity wall was treatment with Prime & Bond 2.1 and then restorated with Dyract. In group 3, the cavity wall was etching with 10% maleic acid, applied with primer and bonding agent and then restorated with Z-100. The interface between dentin and restorative materials was observed by fluoresence imaging with a confocal laser scanning microscope. The results were as follows : 1. In Glass ionomer group, adaptation of resin modified Glass-ionomer restoration against cavity wall is tight, but the crack formed inside of restoration were observed. 2. In Dyract group, the penetration of resin tag is shorter and the width of hybrid layer is narrower than composite resin group. 3. In Z-100 group, primer penetrated deeply through dentinal tubule. Also bonding agent was penetrated along the primer, but the penetration length is shorter than primer part, and in 3-D image, the resin tag is conical shape and lateral branch is observed.

  • PDF

An experimental study on strength of hybrid mortar synthesis with epoxy resin, fly ash and quarry dust under mild condition

  • Sudheer, P.;Muni Reddy, M.G.;Adiseshu, S.
    • Advances in materials Research
    • /
    • v.5 no.3
    • /
    • pp.171-179
    • /
    • 2016
  • Fusion and characterization of bisphenol-A diglycidyl ether based thermosetting polymer mortars containing an epoxy resin, Fly ash and Rock sand are presented here for the Experimental study. The specimens have been prepared by means of an innovative process, in mild conditions, of commercial epoxy resin, Fly ash and Rock sand based paste. In this way, thermosetting based hybrid mortars characterized by a different content of normalized Fly ash and Rock sand by a homogeneous dispersion of the resin have been obtained. Once hardened, these new composite materials show improved compressive strength and toughness in respect to both the Fly ash and the Rock sand pastes since the Resin provides a more cohesive microstructure, with a reduced amount of micro cracks. The micro structural characterization allows pointing out the presence of an Interfacial Transition Zone similar to that observed in cement based mortars. A correlation between micro-structural features and mechanical properties of the mortar has also been studied.

Interfacial stresses in porous PFGM-RC hybrid beam

  • Benferhat Rabia;Hassaine Daouadji Tahar;Rabahi Abderezak
    • Advances in materials Research
    • /
    • v.13 no.1
    • /
    • pp.37-53
    • /
    • 2024
  • This paper presents a careful theoretical investigation into interfacial stresses in RC beams strengthened with externally bonded imperfect FGM plate. In this study, an original model is presented to predict and to determine the stresses concentration at the imperfect FGM end, with the new theory analysis approach. Stress distributions, depending on an inhomogeneity constant, were calculated and presented in forms. It is shown that both the shear and normal stresses at the interface are influenced by the material and geometry parameters of the composite beam, and it is shown that the inhomogeneities play an important role in the distribution of interfacial stresses. The theoretical predictions are compared with other existing solutions. The numerical resolution was finalized by taking into account the physical and geometric properties of materials that may play an important role in reducing the stress values. This research is helpful for the understanding on mechanical behaviour of the interface and design of the PFGM-RC hybrid structures.

Strengthening Mechanism of Hybrid Short Fiber/Particle Reinforced Metal Matrix Composites (섬유/입자 혼합 금속복합재료의 강화기구 해석)

  • 정성욱;이종해;정창규;송정일;한경섭
    • Composites Research
    • /
    • v.13 no.1
    • /
    • pp.50-60
    • /
    • 2000
  • This paper presents an analytical method considering tensile strength enhancement in hybrid $Al_2O_3$ fiber/particle/aluminum composites(MMCs). The tensile strength and elastic modulus of the hybrid MMCs are even 20% higher than those of the fiber reinforced MMCs with same volume fraction of reinforcements. This phenomenon is explained by the cluster model which is newly proposed in this research, and the strengthening mechanisms by a cluster is analyzed using simple modified rule of mixtures. From the analysis, it is observed that cluster structure in hybrid MMCs increase the fiber efficiency factor for the tensile strength and the orientation factor for the elastic modulus. The present theory is then compared with experimental results which was performed using squeeze infiltrated hybrid MMCs made of hybrid $Al_2O_3$ short fiber/particle preform and AC8A alloy as base metal, and the agreement is found to be satisfactory.

  • PDF

Tensile Behavior and Fracture Properties of Ductile Hybrid FRP Reinforcing Bar for Concrete Reinforcement (콘크리트 보강용 고연성 하이브리드 FRP 보강근의 인장 및 파괴 특성)

  • Park, Chan-Gi;Won, Jong-Pil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.1
    • /
    • pp.41-51
    • /
    • 2004
  • FRP re-bar in concrete structures could be used as a substitute of steel re-bars for that cases in which aggressive environment produce high steel corrosion, or lightweight is an important design factor, or transportation cost increase significantly with the weight of the materials. But FRP fibers have only linearly elastic stress-strain behavior; whereas, steel re-bar has linear elastic behavior up to the yield point followed by large plastic deformation and strain hardening. Thus, the current FRP re-bars are not suitable concrete reinforcement where a large amount of plastic deformation prior to collapse is required. The main objectives of this study in to evaluate the tensile behavior and the fracture mode of hybrid FRP re-bar. Fracture mode of hybrid FRP re-bar is unique. The only feature common to the failure of the hybrid FRP re-bars and the composite is the random fiber fracture and multilevel fracture of sleeve fibers, and the resin laceration behavior in both the sleeve and the core areas. Also, the result of the tensile and interlaminar shear stress test results of hybrid FRP re-bar can provide its excellent tensile strength-strain and interlaminar stress-strain behavior.

Environment-friendly Adhesives for Fancy Veneer Bonding of Engineered Flooring to Reduce Formaldehyde and TVOC Emissions

  • Kim, Sumin;Kim, Hyun-Joong;Xu, Guang Zhu;Eom, Young Geun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.58-66
    • /
    • 2007
  • The objective of this research was to develop environment-friendly adhesives for face fancy veneer bonding of engineered flooring. Urea-formaldehyde (UF)-tannin and melamine-formaldehyde (MF)/PVAc hybrid resin were used to replace UF resin in the formaldehyde-based resin system in order to reduce formaldehyde and volatile organic compound (VOC) emissions from the adhesives used between plywoods and fancy veneers. Wattle tannin powder (5 wt%) was added to UF resin and PVAc (30 wt%) to MF resin. These adhesive systems showed better bonding than commercial UF resin with a similar level of wood penetration. The initial adhesion strength was sufficient to be maintained within the optimum initial tack range. The standard formaldehyde emission test (desiccator method) and VOC analyzer were used to determine the formaldehyde and VOC emissions from engineered flooring bonded with commercial UF resin, UF-tannin and MF/PVAc hybrid resin. By desiccator method, the formaldehyde emission level of UF resin showed the highest but was reduced by replacing with UF-tannin and MF/PVAc hybrid resin. MF/PVAc hybrid satisfied the $E_1$ grade (below $1.5mg/{\ell}$). VOC emission results by VOC analyzer were similar with the formaldehyde emission results. TVOC emission was in the following order: UF > UF-tannin > MF/PVAc hybrid resin.

The Performance of Nafion-Based IPMC Actuators Containing Polypyrrole/Alumina Composite Fillers

  • Lee, Jang-Woo;Kim, Ji-Hye;Chun, Yoon-Soo;Yoo, Young-Tai;Hong, Soon-Man
    • Macromolecular Research
    • /
    • v.17 no.12
    • /
    • pp.1032-1038
    • /
    • 2009
  • A polypyrrole (PPy)/alumina composite filler prepared via in-situ polymerization of pyrrole on alumina particles was incorporated into $Nafion^{(R)}$ to improve the performance of ionic polymer-metal composite (IPMC) actuators. The IPMCs with the pristine PPy without alumina support did not show bending displacements superior to that of the bare Nafion-based IPMC, except at a high PPy content of 4 wt%. This result was attributed to the low redox efficiency of the PPy alone in the IPMC and may have also been related to the modulus of the IPMC. However, at the optimized filler contents, the cyclic displacement of the IPMCs bearing the PPy/alumina filler was 2.2 times larger than that of the bare Nafion-based IPMC under an applied AC potential of 3 Vat 1 Hz. Even under a low AC potential of 1.5 V at 1 Hz, the displacement of the PPy/alumina-based IPMCs was a viable level of performance for actuator applications and was 2.7 times higher than that of the conventional Nafion-based IPMC. The generated blocking force was also improved with the PPy/aiumina composite filler. The greatly enhanced performance and the low-voltage-operational characteristic of the IPMCs bearing the PPy/alumina filler were attributed to the synergic effects of the neighboring alumina moiety near the PPy moiety involving electrochemical redox reactions.