• Title/Summary/Keyword: Hybrid Communication

Search Result 1,096, Processing Time 0.03 seconds

Hybrid TCP PEP Scheme, Mixture of Error Recovery Method and the TCP Hybla in Satellite Communications (위성통신에서 에러 복구 방법과 TCP Hybla를 결합한 Hybrid TCP PEP 기법)

  • Lee, Seunglyong;Kim, Jong-Mu;Oh, Ji-Hoon;Kim, Jae-Hyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.11
    • /
    • pp.15-22
    • /
    • 2016
  • In satellite communication, transmission performance is degraded due to long propagation delay and relatively high data loss compared to terrestrial network. In this paper, We propose Hybrid TCP PEP scheme with XOR coding and Hybla TCP, which reduces the transmission performance degradation due to the transmission delay time. Experimental results show that the proposed method improves the file transfer rate by more than 10% in the environment with high channel error rate. Therefore, Hybrid TCP, which is a mixture of XOR coding method and TCP Hybla, is considered to contribute to the improvement of transmission speed in satellite communication when applied to connection split PEP.

A study on the receiving rate of the data of the hybrid communication system using data transfer methods for controller system of navigational aids (데이터 전송방식에 따른 항로표지 관리용 하이브리드 통신 시스템의 수신율 분석에 관한 연구)

  • Jeon, Joong Sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.78-85
    • /
    • 2014
  • The Mu-communication board supported by hybrid communication is designed with Cortex M3, which is a low power energy consumption 32-bit microcontroller. The Cortex M3 microcontroller has UART(Universal asynchronous receiver/transmitter) ports which can set appropriately using the command line interpreter (CLI) program with each port. URAT ports are used for hybrid communication modems, GPS modules, etc. When the socket type was compared with the short message service type, the socket type was proven to be better. By improving the receiving performance in the control and management system of the AtoN, data loss was minimized. During the testing of the socket and SMS, data was collected from each buoy for 12 hours every 1 minute and the receiving rate of the data was found to be more than 98.58 % and 99.42 % respectively.

Traffic Engineering and Manageability for Multicast Traffic in Hybrid SDN

  • Ren, Cheng;Wang, Sheng;Ren, Jing;Wang, Xiong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2492-2512
    • /
    • 2018
  • Multicast communication can effectively reduce network resources consumption in contrast with unicast. With the advent of SDN, current researches on multicast traffic are mainly conducted in the SDN scenario, thus to mitigate the problems of IP multicast such as the unavoidable difficulty in traffic engineering and high security risk. However, migration to SDN cannot be achieved in one step, hybrid SDN emerges as a transitional networking form for ISP network. In hybrid SDN, for acquiring similar TE and security performance as in SDN multicast, we redirect every multicast traffic to an appropriate SDN node before reaching the destinations of the multicast group, thus to build up a core-based multicast tree substantially which is first introduced in CBT. Based on the core SDN node, it is possible to realize dynamic control over the routing paths to benefit traffic engineering (TE), while multicast traffic manageability can also be obtained, e.g., access control and middlebox-supported network services. On top of that, multiple core-based multicast trees are constructed for each multicast group by fully taking advantage of the routing flexibility of SDN nodes, in order to further enhance the TE performance. The multicast routing and splitting (MRS) algorithm is proposed whereby we jointly and efficiently determine an appropriate core SDN node for each group, as well as optimizing the traffic splitting fractions for the corresponding multiple core-based trees to minimize the maximum link utilization. We conduct simulations with different SDN deployment rate in real network topologies. The results indicate that, when 40% of the SDN switches are deployed in HSDN as well as calculating 2 trees for each group, HSDN multicast adopting MRS algorithm can obtain a comparable TE performance to SDN multicast.

Near-Optimal Low-Complexity Hybrid Precoding for THz Massive MIMO Systems

  • Yuke Sun;Aihua Zhang;Hao Yang;Di Tian;Haowen Xia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.1042-1058
    • /
    • 2024
  • Terahertz (THz) communication is becoming a key technology for future 6G wireless networks because of its ultra-wide band. However, the implementation of THz communication systems confronts formidable challenges, notably beam splitting effects and high computational complexity associated with them. Our primary objective is to design a hybrid precoder that minimizes the Euclidean distance from the fully digital precoder. The analog precoding part adopts the delay-phase alternating minimization (DP-AltMin) algorithm, which divides the analog precoder into phase shifters and time delayers. This effectively addresses the beam splitting effects within THz communication by incorporating time delays. The traditional digital precoding solution, however, needs matrix inversion in THz massive multiple-input multiple-output (MIMO) communication systems, resulting in significant computational complexity and complicating the design of the analog precoder. To address this issue, we exploit the characteristics of THz massive MIMO communication systems and construct the digital precoder as a product of scale factors and semi-unitary matrices. We utilize Schatten norm and Hölder's inequality to create semi-unitary matrices after initializing the scale factors depending on the power allocation. Finally, the analog precoder and digital precoder are alternately optimized to obtain the ultimate hybrid precoding scheme. Extensive numerical simulations have demonstrated that our proposed algorithm outperforms existing methods in mitigating the beam splitting issue, improving system performance, and exhibiting lower complexity. Furthermore, our approach exhibits a more favorable alignment with practical application requirements, underlying its practicality and efficiency.

Design and Implementation of Wireless Modem for Indoor Data Communication (구내 데이터 통신용 무선모뎀 설계 및 구현)

  • Cho, Byung-Hak
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.11 no.1
    • /
    • pp.16-22
    • /
    • 2012
  • Wireless data communication is easy to be affected by channel noise and degrade reliability and stability by the multipath fading and ISI compared with wired data communication. In this paper, we designed and implemented indoor wireless modem adopted DQPSK modulation scheme for improvement of bandwidth efficiency, and convolutional encoding, Viterbi decoding and hybrid ARQ algorithm combinig FEC with CRC for efficient error control in indoor wireless channel. Testing the implemented wireless modem, we verified the proposed scheme is proper to efficient and reliable indoor wireless data communication.

  • PDF

Speed Estimation and Control of IPMSM using HAI Control (HAI 제어를 이용한 IPMSM의 속도 추정 및 제어)

  • Lee, Jung-Chul;Lee, Hong-Gyun;Lee, Young-Sil;Nam, Su-Myeong;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.176-178
    • /
    • 2004
  • Precise control of interior permanent magnet synchronous motor(IPMSM) over wide speed range is an engineering challenge. This paper considers the design and implementation of novel technique of speed estimation and control for IPMSM using hybrid intelligent control. The hybrid combination of neural network and adaptive fuzzy control will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed speed control of IPMSM using adaptive neural network fuzzy(A-NNF) and estimation of speed using artificial neural network(ANN) controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed.

  • PDF

Implementation of Hybrid IP-PBX System offer to Voice Conference and Video Conference base on the SIP (SIP 기반 음성 및 화상회의용 하이브리드 IP-PBX 시스템 구현)

  • Kim, Sam-Taek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.4
    • /
    • pp.115-122
    • /
    • 2009
  • These day, market demanded to a Video conference systems rapidly increases in our life for cut cost in communication. more and more it will be grow up. but the cost building to a Voice conference and a Video conference is very hight. therefore it is builded around the big company and the public office. so in this study, we have developed to hybrid IP-PBX which is able to a Voice conference and a Video conference with one system. the system developed has the merits to low-price for it's building in a small company. we make proof the performance through the test. with using the hybrid IP-PBX, we can sharply reduce to communication cost.

  • PDF

Research on operation stability of 7kW Inverter for short distance vehicle using SiC Hybrid module (SiC 하이브리드 모듈을 적용한 근거리용 7kW Inverter 동작 안정성에 대한 연구)

  • Jeon, Joon-Hyeok;Kyoung, Sin-Su;Kim, Hee-Jun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.5
    • /
    • pp.499-506
    • /
    • 2019
  • This paper is concerned with the operating stability of 7kW inverter using SIC hybrid module and verifies the validity of the simulation results by comparing the result of the loss equation and the simulation result, Simulation results using Si module and SiC hybrid module are compared to compare switch loss and diode loss. Through the loss equation calculation, the conduction loss of SiC Hybrid module is 168W, switching loss is 9.3W, diode loss is 10.5nW, When compared with the simulation results, similar values were shown. As a result of comparing the simulation results of the Si module and the SiC Hybrid module, The total device loss of the Si module was 246.2W, and the total device loss of the SiC Hybrid module was 189.9W. The loss difference was 56.3W, which was about 0.8W. thereby verifying the reverse recovery characteristics of the SiC SBD. In addition, temperature saturation test was conducted to confirm the stability of SiC Hybrid module and Si module under high temperature saturation, In the case of the Si module, the output power was stopped at 4kW, and the SiC Hybrid module was confirmed to operate at 7kW. Based on this, an efficiency graph and a temperature graph are presented, and the Si module is graphed up to 4kW and the SiC Hybrid module is graphed up to 7kW.

A Hybrid Blockchain-based Identity Management Framework for Devices in Microgrid (마이크로그리드에서 장치들을 위한 하이브리드 블록 체인 기반 식별 관리 프레임워크)

  • Cabacas, Regin A.;Ra, In-Ho
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2019.05a
    • /
    • pp.7-8
    • /
    • 2019
  • This paper presents a hybrid blockchain-based Identity Management Framework for devices in Microgrid. It incorporates the use of a Public and Private Blockchain platform to store and authenticate Microgrid device identities. It also emphasizes the shared responsibility of the manufacturers to provide the first layer of authentication for the devices they produce. Identities of each device are stored in the private and public Blockchain and authenticated using physically unclonable functions (PUF) and cryptographic functions.

  • PDF

Study on Precise Positioning using Hybrid Track Circuit system in Metro (하이브리드 궤도회로를 이용한 지하철 정위치정차에 대한 연구)

  • Jung, Ho-Hung;Ko, Yang-Og;Li, Chang-Long;Lee, Key-Seo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.3
    • /
    • pp.471-477
    • /
    • 2013
  • We have studied on the possibility of precise positioning using hybrid Track Circuit system. Hybrid Track Circuit uses RFID which replaces UHF. Hybrid Track Circuit is a part of next generation railroad signal system which is available to communicate with a railway on board system based on a realtime operating system. If applicate on a current hand operating subway, phenomenon caused by driver's mistake such as passing a stop without stopping or mismatch error between PSD and train door should be prevented.