• Title/Summary/Keyword: Hybrid Communication

Search Result 1,096, Processing Time 0.029 seconds

An Efficient and Flexible Hybrid Conditional Access System for Advanced T-DMB

  • Bae, Byung-Jun;Song, Yun-Jeong;Lee, Soo-In;Seo, Hyung-Yoon;Kim, Jong-Deok
    • ETRI Journal
    • /
    • v.33 no.4
    • /
    • pp.629-632
    • /
    • 2011
  • This letter presents a hybrid conditional access system (CAS) for advanced terrestrial digital multimedia broadcasting (AT-DMB). The proposed architecture is characterized by its use of a unified CAS channel and various communication networks for CAS message transmissions. We implement a prototype CAS based on the hybrid architecture, which improves the CAS message transmission efficiency greatly compared to the existing T-DMB CAS standard and supports various AT-DMB interlayer services more easily and efficiently.

Classification in Different Genera by Cytochrome Oxidase Subunit I Gene Using CNN-LSTM Hybrid Model

  • Meijing Li;Dongkeun Kim
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.2
    • /
    • pp.159-166
    • /
    • 2023
  • The COI gene is a sequence of approximately 650 bp at the 5' terminal of the mitochondrial Cytochrome c Oxidase subunit I (COI) gene. As an effective DeoxyriboNucleic Acid (DNA) barcode, it is widely used for the taxonomic identification and evolutionary analysis of species. We created a CNN-LSTM hybrid model by combining the gene features partially extracted by the Long Short-Term Memory ( LSTM ) network with the feature maps obtained by the CNN. Compared to K-Means Clustering, Support Vector Machines (SVM), and a single CNN classification model, after training 278 samples in a training set that included 15 genera from two orders, the CNN-LSTM hybrid model achieved 94% accuracy in the test set, which contained 118 samples. We augmented the training set samples and four genera into four orders, and the classification accuracy of the test set reached 100%. This study also proposes calculating the cosine similarity between the training and test sets to initially assess the reliability of the predicted results and discover new species.

A Study on Direct Cache-to-Cache Transfer for Hybrid Cache Architecture to Reduce Write Operations (쓰기 횟수 감소를 위한 하이브리드 캐시 구조에서의 캐시간 직접 전송 기법에 대한 연구)

  • Juhee Choi
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.1
    • /
    • pp.65-70
    • /
    • 2024
  • Direct cache-to-cache transfer has been studied to reduce the latency and bandwidth consumption related to the shared data in multiprocessor system. Even though these studies lead to meaningful results, they assume that caches consist of SRAM. For example, if the system employs the non-volatile memory, the one of the most important parts to consider is to decrease the number of write operations. This paper proposes a hybrid write avoidance cache coherence protocol that considers the hybrid cache architecture. A new state is added to finely control what is stored in the non-volatile memory area, and experimental results showed that the number of writes was reduced by about 36% compared to the existing schemes.

  • PDF

Levitation and Thrust Forces Analysis of Hybrid-Excited Linear Synchronous Motor for Magnetically Levitated Vehicle

  • Cho, Han-Wook;Kim, Chang-Hyun;Han, Hyung-Suk;Lee, Jong-Min
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.564-569
    • /
    • 2012
  • This paper proposes a hybrid-excited linear synchronous motor (LSM) that has potential applications in a magnetically levitated vehicle. The levitation and thrust force characteristics of the LSM are investigated by means of three-dimensional (3-D) numerical electromagnetic FEM calculations and experimental verification. Compared to a conventional LSM with electromagnets, a hybrid-excited LSM can improve levitation force/weight ratios, and reduce the power consumption of the vehicle. Because the two-dimensional (2-D) FE analysis model describes only the center section of the physical device, it cannot express the complex behavior of leakage flux, which this study is able to predicts along with levitation and thrust force characteristics by 3-D FEM calculations. A static force tester for a hybrid-excited LSM has been manufactured and tested in order to verify these predictions. The experimental results confirm the validity of the 3-D FEM calculation scheme for the description of a hybrid-excited LSM.

Hybrid TOA/AOA Cooperative Mobile Localization in 4G Cellular Networks

  • Wu, Shixun;Wang, Shuliang;Xu, Kai;Wang, Honggang
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.2
    • /
    • pp.77-85
    • /
    • 2013
  • this study examined hybrid Time of Arrival/Angle of Arrival (TOA/AOA) localization technique in a cellular network. Based on the linearized equations from the TOA and AOA measurements, the weighted least square (WLS) method is proposed to obtain the location estimation of a mobile station (MS) by analyzing the statistical properties of the error vector in Line of Sight (LOS) and Non-line of Sight (NLOS) environments, respectively. Moreover, the precise expression of the Cramer-Rao lower bound (CRLB) for hybrid TOA/AOA measurements in different LOS/NLOS conditions was derived when the LOS error is a Gaussian variable and the NLOS error is an exponential variable. The idea of cooperative localization is proposed based on the additional information from short-range communication among the MSs in fourth generation (4G) cellular networks. Therefore, the proposed hybrid TOA/AOA WLS method can be improved further with the cooperative scheme. The simulation results show that the hybrid TOA/AOA method has better performance than the TOA only method, particularly when the AOA measurements are accurate. Moreover, the performance of the hybrid TOA/AOA method can be improved further by the cooperative scheme.

  • PDF

Improved Hybrid MIMO Scheme for Next Generation Communication System (차세대 통신 시스템을 위한 향상된 하이브리드 MIMO 기법)

  • Jo, Bong-Gyun;Han, Dong-Seog
    • Journal of Broadcast Engineering
    • /
    • v.16 no.6
    • /
    • pp.969-976
    • /
    • 2011
  • In this paper, a terrestrial transmission system is proposed for the next generation digital television (DTV) system by applying a hybrid multi-input multi-output (MIMO) technology based on linear dispersion codes (LDCs). The digital video broadcasting-2nd generation terrestrial (DVB-T2) system adopted a space time block code (STBC) for improving receive performance. However, the data rate of STBC is not increased in proportion to the transmitter. The hybrid STBC scheme utilizes several STBC transmission blocks for increasing data rate. It is possible to increase the data rate and performance in the receiver by utilizing LDC. The performances of the proposed and conventional hybrid STBC schemes are evaluated through computer simulations.

A Design of 90° Hybrid Coupler with Low Pass Filter Attenuation (저역통과 여파기 감쇠를 갖는 90° 하이브리드 특성에 관한 연구)

  • Lee, Su-Yeol;Kang, Jung-Hoon;Park, Kyu-Ho;Ahn, Dal
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.2
    • /
    • pp.178-182
    • /
    • 2004
  • In this paper, a 90$^{\circ}$ hybrid coupler with both power division and harmonic rejection characteristics is presented by applying a LPF characteristic to a conventional 90$^{\circ}$ hybrid. Since a conventional 90$^{\circ}$ hybrid coupler operates as a power divider/combiner using phase difference, it does not suppress higher order harmonics when it is incorporated with nonlinear amplifier. This requires an additional filter to take into account of the harmonics. The proposed 90$^{\circ}$hybrid coupler power provides the division capability and proper phase difference, as well as harmonic suppression characteristic by integrating LPF characteristic.

Incorporating RSA with a New Symmetric-Key Encryption Algorithm to Produce a Hybrid Encryption System

  • Prakash Kuppuswamy;Saeed QY Al Khalidi;Nithya Rekha Sivakumar
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.196-204
    • /
    • 2024
  • The security of data and information using encryption algorithms is becoming increasingly important in today's world of digital data transmission over unsecured wired and wireless communication channels. Hybrid encryption techniques combine both symmetric and asymmetric encryption methods and provide more security than public or private key encryption models. Currently, there are many techniques on the market that use a combination of cryptographic algorithms and claim to provide higher data security. Many hybrid algorithms have failed to satisfy customers in securing data and cannot prevent all types of security threats. To improve the security of digital data, it is essential to develop novel and resilient security systems as it is inevitable in the digital era. The proposed hybrid algorithm is a combination of the well-known RSA algorithm and a simple symmetric key (SSK) algorithm. The aim of this study is to develop a better encryption method using RSA and a newly proposed symmetric SSK algorithm. We believe that the proposed hybrid cryptographic algorithm provides more security and privacy.

Study on the Hybrid HRN Algorithm for Efficient Elevator Boarding Considering the Users' Waiting Time (사용자의 효율적인 엘리베이터 탑승 대기시간을 위한 Hybrid HRN Algorithm 연구)

  • Baek, Jin-Woo;Yeom, Gi-Hun;Chung, Sung-Wook
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.1
    • /
    • pp.45-55
    • /
    • 2022
  • Currently, the Collective Control Algorithm is the most popular elevator algorithm. The Collective Control Algorithm allows the user to use the elevator when the direction of movement of the elevator and the direction of the user's destination are the same. However, the algorithm has a problem in that only one elevator responds to a user's call when the user's waiting time and using multiple elevators. To solve this problem, this paper proposes a new hybrid HRN algorithm based on the highest response ratio next (HRN) algorithm. In general, HRN Algorithm requires a user's boarding time and getting off time, but due to the nature of the elevator, it is difficult to predict the user's call in advance. Therefore, to overcome these limitations, this paper proposes Hybrid HRN Algorithm that considers the distance between the user's call location and the arrival location. This paper shows that Hybrid HRN Algorithm, proposed through experiments, has an average waiting time of 23.34 seconds, a standard deviation of 11.86, a total moving distance of 535.2m, a total operating time of 84sec, and a driving balance between the two elevators is 92m, which is superior to the previously suggested Collective Control, Zoning, and 3-Passage Algorithm.

A Study on the Parallel Routing in Hybrid Optical Networks-on-Chip (하이브리드 광학 네트워크-온-칩에서 병렬 라우팅에 관한 연구)

  • Seo, Jung-Tack;Hwang, Yong-Joong;Han, Tae-Hee
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.8
    • /
    • pp.25-32
    • /
    • 2011
  • Networks-on-chip (NoC) is emerging as a key technology to overcome severe bus traffics in ever-increasing complexity of the Multiprocessor systems-on-chip (MPSoC); however traditional electrical interconnection based NoC architecture would be faced with technical limits of bandwidth and power consumptions in the near future. In order to cope with these problems, a hybrid optical NoC architecture which use both electrical interconnects and optical interconnects together, has been widely investigated. In the hybrid optical NoCs, wormhole switching and simple deterministic X-Y routing are used for the electrical interconnections which is responsible for the setup of routing path and optical router to transmit optical data through optical interconnects. Optical NoC uses circuit switching method to send payload data by preset paths and routers. However, conventional hybrid optical NoC has a drawback that concurrent transmissions are not allowed. Therefore, performance improvement is limited. In this paper, we propose a new routing algorithm that uses circuit switching and adaptive algorithm for the electrical interconnections to transmit data using multiple paths simultaneously. We also propose an efficient method to prevent livelock problems. Experimental results show up to 60% throughput improvement compared to a hybrid optical NoC and 65% power reduction compared to an electrical NoC.