• Title/Summary/Keyword: Hybrid Bearing

Search Result 170, Processing Time 0.034 seconds

Experimental and analytical study on improvement of flexural strength of polymer concrete filled GFRP box hybrid members

  • Ali Saribiyik;Ozlem Ozturk;Ferhat Aydin;Yasin Onuralp Ozkilic;Emrah Madenci
    • Steel and Composite Structures
    • /
    • v.50 no.4
    • /
    • pp.475-487
    • /
    • 2024
  • The usage of fiber-reinforced polymer materials increases in the construction sector due to their advantages in terms of high mechanical strength, lightness, corrosion resistance, low density and high strength/density ratio, low maintenance and painting needs, and high workability. In this study, it is aimed to improve mechanical properties of GFRP box profiles, produced by pultrusion method, by filling the polymer concrete into them. Within the scope of study, hybrid use of polymer concrete produced with GFRP box profiles was investigated. Hybrid pressure and bending specimens were produced by filling polymer concrete (polyester resin manufactured with natural sand and stone chips) into GFRP box profiles having different cross-sections and dimensions. Behavior of the produced hybrid members was investigated under bending and compression tests. Hollow GFRPxx profiles, polymer-filled hybrid members, and nominative polymeric concrete specimens were tested as well. The behavior of the specimens under pressure and bending tests, and their load bearing capacities, deformations and changes in toughness were observed. According to the test results; It was deduced that hybrid design has many advantages over its component materials as well as superior physical and mechanical properties.

Rotordynamic Design and Analysis of the Rotor-Bearing System of a 500Wh Flywheel Energy Storage Device (플라이휠 에너지 저장장치 회전체계의 동역학적 설계 및 해석)

  • 최상규;김영철;경진호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.283-289
    • /
    • 1997
  • A 500Wh class high-speed Flywheel Energy Storage System (FESS) driven by a built-in BLDC motor/generator has been designed, which runs from 30000 to 60000rpm nominally. Due to the motor/generator inside, the flywheel rotor made of composites supported by PM/EM hybrid bearing system has a shape of bell or pendulum and thus requires accurate rotordynamic analyses and prediction of its dynamic behavior to secure the operating reliability. Rotordaynamic analyses of the flywheel rotor-bearing system revealed that the bell shaped rotor has two conical rigid-body modes in the system operating range and the first conical mode, of which nodal point lies in the radial EM bearing position, can adversely affect the dynamic response of the rotor at the corresponding critical speed. To eliminate the possibility of wild behavior of the rotor, two guide bearings are adopted at the upper end of the rotor and motor/generator. It was also revealed that the EM bearing stiffness of 0.5~1.0E+6 N/m and damping of 2000 Ns/m are favorable for smooth operation of the system around the 2nd critical speed.

  • PDF

Ankle Arthrodesis using Cannulated Screws & Hybrid Type Rigid External Fixation in Diabetic Charcot Neuroarthropathy (유관 나사 및 Hybrid형 외고정술을 이용한 당뇨병성 샤르코 족관절 신경관절병증의 관절 유합술)

  • Han, Kyeung-Jin;Roh, Hyong-Rae;Han, Seung-Hwan
    • Journal of Korean Foot and Ankle Society
    • /
    • v.14 no.2
    • /
    • pp.140-145
    • /
    • 2010
  • Purpose: The diabetic charcot neuroarthropathy of ankle is an infrequent site (around 5%), but is definitely the location that, because of the instability and progressive deformity it involves, cause ulceration in a high percentage of patients, and this can then become a reason for amputation. However, the treatment of this disastrous disease is still challenging. We analyzed the clinical and radiological results of ankle arthrodesis by our fixation method in Charcot neuroarthropathy. Materials and Methods: Seven cases that were diagnosed as charcot neuroarthropathy of ankle arthrodesis were followed for more than 16 months postoperatively. Mean age was 57 years, and the mean follow-up period was 27 months. Anterior approach was used in arthrodesis, and internal fixation by 3 or more cannulated screws and hybrid type external fixation were used. Auto iliac bone for grafting was combined in all cases. External fixator was kept for 3 months without weight-bearing. Then, boots brace was applied for more 3 months allowing partial weight-bearing. Four cases had minor complications such as pin site infection. Preoperative and postoperative AOFAS score, time to fusion and postoperative complications were checked. Results: Postoperative fusion was completed in all cases, and the mean time to fusion was 3.4 months. No postoperative complication was checked. At the last follow-up, the mean AOFAS score had increased from 54 points to 72 points. Patient's satisfaction was over 80%. Conclusion: Satisfactory results were obtained after ankle arthrodesis using internal and hybrid type external fixation combined with auto iliac bone graft in charcot neuroarthropathy with minor complications.

Shock absorption of concrete liquid storage tank with different kinds of isolation measures

  • Jing, Wei;Chen, Peng;Song, Yu
    • Earthquakes and Structures
    • /
    • v.18 no.4
    • /
    • pp.467-480
    • /
    • 2020
  • Concrete rectangular liquid storage tanks are widely used, but there are many cases of damage in previous earthquakes. Nonlinear fluid-structure interaction (FSI) is considered, Mooney-Rivlin material is used for rubber bearing, nonlinear contact is used for sliding bearing, numerical calculation models of no-isolation, rubber isolation, sliding isolation and hybrid isolation concrete rectangular liquid storage tanks are established; dynamic responses of different structures are compared to verify the effectiveness of isolation methods; and influences of earthquake amplitude, bidirectional earthquake and far-field long-period earthquake on dynamic responses are investigated. Results show that for liquid sloshing wave height, rubber isolation cause amplification effect, while sliding isolation and hybrid isolation have reduction effect; displacement of rubber isolation structure is much larger than that of sliding isolation with limiting-devices and hybrid isolation structure; when PGA is larger, wall cracking probability of no-isolation structure becomes larger, and probability of liquid sloshing wave height and structure displacement of rubber isolation structure exceeds the limit is also larger; under bidirectional earthquake, occurrence probabilities that liquid sloshing wave height and structure displacement of rubber isolation structure exceed the limit will be increased; besides, far-field long-period earthquake mainly influences structure displacement and liquid sloshing wave height. On the whole, control effect of sliding isolation is the best, followed by hybrid isolation, and rubber isolation is the worst.

Three-Dimensional Rotordynamic Analysis Considering Bearing Support Effects (베어링 지지 효과를 고려한 3 차원 로터동역학 해석)

  • Park, Hyo-Keun;Kim, Dong-Hyun;Kim, Myung-Kuk;Chen, Seung-Bae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.902-909
    • /
    • 2006
  • In this study, three-dimensional rotordynamic analyses have been conducted using equivalent beam, hybrid and fun three-dimensional models. The Present computational method is based on the general finite element method with rotating gyroscopic effects of a rotor system. General purpose commercial finite element code, SAMCEF which includes practical rotordynamics module with various types of rotor analysis methods and bearing elements is applied. For the purpose of numerical verification, comparison study for a benchmark rotor model with support bearings is performed first. Detailed finite element models based on three different modeling concepts are constructed and then computational analyses are conducted for the realistic and complex three-dimensional rotor system. The results for rotor stability and mass unbalance response are presented and compared with the experimental vibration test conducted in this study.

  • PDF

Seismic behavior of structures isolated with a hybrid system of rubber bearings

  • Chen, Bo-Jen;Tsai, C.S.;Chung, L.L.;Chiang, Tsu-Cheng
    • Structural Engineering and Mechanics
    • /
    • v.22 no.6
    • /
    • pp.761-783
    • /
    • 2006
  • The enlargement of interest in base isolators as an earthquake-proof design strategy has dramatically accelerated experimental studies of elastomeric bearings worldwide. In this paper, a new base isolator concept that is a hybrid system of rubber bearings is proposed. Uniaxial, biaxial, and triaxial shaking table tests are also performed to study the seismic behavior of a 0.4-scale three-story isolated steel structure in the National Center for Research on Earthquake Engineering in Taiwan. Experimental results demonstrate that structures with a hybrid system of rubber bearings composed of stirruped rubber bearings and laminated rubber bearings can actually decrease the seismic responses of the superstructure. It has been proved through the shaking table tests that the proposed hybrid system of rubber bearings is a very promising tool to enhance the seismic resistance of structures. Moreover, it is demonstrated that the proposed analytical model in this paper can predict the mechanical behavior of the hybrid system of rubber bearings and seismic responses of the base-isolated structures.

Experimental research on seismic behavior of SRC-RC transfer columns

  • Wu, Kai;Xue, Jianyang;Nan, Yang;Zhao, Hongtie
    • Steel and Composite Structures
    • /
    • v.21 no.1
    • /
    • pp.157-175
    • /
    • 2016
  • It was found that the lateral stiffness changes obvious at the transfer position of the section configuration from SRC to RC. This particular behavior leads to that the transfer columns become as the important elements in SRC-RC hybrid structures. A comprehensive study was conducted to investigate the seismic behavior of SRC-RC transfer columns based on a low cyclic loading test of 16 transfer columns compared with 1 RC column. Test results shows three failure modes for transfer columns, which are shear failure, bond failure and bend failure. Its seismic behavior was completely analyzed about the failure mode, hysteretic and skeleton curves, bearing capacity deformation ability, stiffness degradation and energy dissipation. It is further determined that displacement ductility coefficient of transfer columns changes from 1.97 to 5.99. The stiffness of transfer columns are at the interval of SRC and RC, and hence transfer columns can play the role of transition from SRC to RC. All specimens show similar discipline of stiffness degradation and the process can be divided into three parts. Some specimens of transfer column lose bearing capacity swiftly after shear cracking and showed weak energy dissipation ability, but the others show better ability of energy dissipation than RC column.

Investigating the Influence of Rate Dependency and Axial Force on the Seismic Performance Evaluation of Isolation Bearing (면진받침의 내진성능평가를 위한 실험 시 속도의존성과 수직하중의 영향)

  • Minseok Park;Yunbyeong Chae;Chul-Young Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.22-29
    • /
    • 2023
  • In the evaluation of seismic performance for structural materials and components, the loading rate and axial force can have a significant impact. Due to time-delay effects between input and output displacements, It is difficult to apply high-rate displacement in cyclic tests and hybrid simulations. Additionally, the difficulty of maintaining a consistent vertical load in the presence of lateral displacement has limited fast and real-time tests performed while maintaining a constant vertical load. In this study, slow, fast cyclic tests and real-time hybrid simulations were conducted to investigate the rate dependency and the influence of vertical loads of Isolation Bearing. In the experiment, the FLB System including an Adaptive Time Series (ATS) compensation and a state estimator was constructed for real-time control of displacement and vertical load. It was found that the vertical load from the superstructure and loading rate can have a significant impact on the strength of the seismic isolation bearing and its behavior during an earthquake. When conducting experiments for seismic performance evaluation, they must be implemented to be similar to reality. This study demonstrates the excellent performance of the system built and used for seismic performance evaluation and enables accurate and efficient seismic performance evaluation.

Development of Long-Span Steel-Precast Composite Beam for Green Apartment Building (장스팬이 가능한 친환경 공동주택용 철골 프리캐스트 합성보 개발)

  • Yoon, Tae-Ho;Hong, Won-Kee;Park, Seon-Chee;Yune, Dai-Young
    • KIEAE Journal
    • /
    • v.11 no.1
    • /
    • pp.9-14
    • /
    • 2011
  • Currently, the multi-residential apartments used in Korea are mostly bearing wall apartments which don't satisfy consumers for the lack of architectural plan flexibility. And due to remodelling-incompatible, bearing wall apartments have to be reconstructed. It is, thus, necessary to develop multi-residential apartments utilizing composite beam that can replace the conventional bearing wall-type apartment buildings. Composite beams proposed in this paper ensure modification of space and quality control, while the floor heights are maintained at the same floor height as in bearing wall structures. This study analyzes the experimental behavior of composite beams with proper combination of structural steel, reinforced concrete, and precast concrete. By comparing with the theoretical analysis and experimental results, the accuracy of flexural moment capacity and neutral axis was evaluated. The experiments were performed by two simply-supported specimens using loading and unloading. When the analysis results were compared with the experimental results, the flexural moment capacity of the composite beam was shown with an error of approximately -0.5 to 0.1% at the maximum load limit state.

Analyzing the bearing capacity of shallow foundations on two-layered soil using two novel cosmology-based optimization techniques

  • Gor, Mesut
    • Smart Structures and Systems
    • /
    • v.29 no.3
    • /
    • pp.513-522
    • /
    • 2022
  • Due to the importance of accurate analysis of bearing capacity in civil engineering projects, this paper studies the efficiency of two novel metaheuristic-based models for this objective. To this end, black hole algorithm (BHA) and multi-verse optimizer (MVO) are synthesized with an artificial neural network (ANN) to build the proposed hybrid models. Based on the settlement of a two-layered soil (and a shallow footing) system, the stability values (SV) of 0 and 1 (indicating the stability and failure, respectively) are set as the targets. Each model predicted the SV for 901 stages. The results indicated that the BHA and MVO can increase the accuracy (i.e., the area under the receiving operating characteristic curve) of the ANN from 94.0% to 96.3 and 97.2% in analyzing the SV pattern. Moreover, the prediction accuracy rose from 93.1% to 94.4 and 95.0%. Also, a comparison between the ANN's error decreased by the BHA and MVO (7.92% vs. 18.08% in the training phase and 6.28% vs. 13.62% in the testing phase) showed that the MVO is a more efficient optimizer. Hence, the suggested MVO-ANN can be used as a reliable approach for the practical estimation of bearing capacity.