• Title/Summary/Keyword: Hybrid Algorithm

Search Result 1,922, Processing Time 0.024 seconds

An inverse determination method for strain rate and temperature dependent constitutive model of elastoplastic materials

  • Li, Xin;Zhang, Chao;Wu, Zhangming
    • Structural Engineering and Mechanics
    • /
    • v.80 no.5
    • /
    • pp.539-551
    • /
    • 2021
  • With the continuous increase of computational capacity, more and more complex nonlinear elastoplastic constitutive models were developed to study the mechanical behavior of elastoplastic materials. These constitutive models generally contain a large amount of physical and phenomenological parameters, which often require a large amount of computational costs to determine. In this paper, an inverse parameter determination method is proposed to identify the constitutive parameters of elastoplastic materials, with the consideration of both strain rate effect and temperature effect. To carry out an efficient design, a hybrid optimization algorithm that combines the genetic algorithm and the Nelder-Mead simplex algorithm is proposed and developed. The proposed inverse method was employed to determine the parameters for an elasto-viscoplastic constitutive model and Johnson-cook model, which demonstrates the capability of this method in considering strain rate and temperature effect, simultaneously. This hybrid optimization algorithm shows a better accuracy and efficiency than using a single algorithm. Finally, the predictability analysis using partial experimental data is completed to further demonstrate the feasibility of the proposed method.

Two variations of cross-distance selection algorithm in hybrid sufficient dimension reduction

  • Jae Keun Yoo
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.2
    • /
    • pp.179-189
    • /
    • 2023
  • Hybrid sufficient dimension reduction (SDR) methods to a weighted mean of kernel matrices of two different SDR methods by Ye and Weiss (2003) require heavy computation and time consumption due to bootstrapping. To avoid this, Park et al. (2022) recently develop the so-called cross-distance selection (CDS) algorithm. In this paper, two variations of the original CDS algorithm are proposed depending on how well and equally the covk-SAVE is treated in the selection procedure. In one variation, which is called the larger CDS algorithm, the covk-SAVE is equally and fairly utilized with the other two candiates of SIR-SAVE and covk-DR. But, for the final selection, a random selection should be necessary. On the other hand, SIR-SAVE and covk-DR are utilized with completely ruling covk-SAVE out, which is called the smaller CDS algorithm. Numerical studies confirm that the original CDS algorithm is better than or compete quite well to the two proposed variations. A real data example is presented to compare and interpret the decisions by the three CDS algorithms in practice.

Voltage Stability Prediction on Power System Network via Enhanced Hybrid Particle Swarm Artificial Neural Network

  • Lim, Zi-Jie;Mustafa, Mohd Wazir;Jamian, Jasrul Jamani
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.877-887
    • /
    • 2015
  • Rapid development of cities with constant increasing load and deregulation in electricity market had forced the transmission lines to operate near their threshold capacity and can easily lead to voltage instability and caused system breakdown. To prevent such catastrophe from happening, accurate readings of voltage stability condition is required so that preventive equipment and operators can execute security procedures to restore system condition to normal. This paper introduced Enhanced Hybrid Particle Swarm Optimization algorithm to estimate the voltage stability condition which utilized Fast Voltage Stability Index (FVSI) to indicate how far or close is the power system network to the collapse point when the reactive load in the system increases because reactive load gives the highest impact to the stability of the system as it varies. Particle Swarm Optimization (PSO) had been combined with the ANN to form the Enhanced Hybrid PSO-ANN (EHPSO-ANN) algorithm that worked accurately as a prediction algorithm. The proposed algorithm reduced serious local minima convergence of ANN but also maintaining the fast convergence speed of PSO. The results show that the hybrid algorithm has greater prediction accuracy than those comparing algorithms. High generalization ability was found in the proposed algorithm.

A Vehicle Routing Problem Which Considers Hard Time Window By Using Hybrid Genetic Algorithm (하이브리드 유전자알고리즘을 이용한 엄격한 시간제약 차량경로문제)

  • Baek, Jung-Gu;Jeon, Geon-Wook
    • Journal of the military operations research society of Korea
    • /
    • v.33 no.2
    • /
    • pp.31-47
    • /
    • 2007
  • The main purpose of this study is to find out the best solution of the vehicle routing problem with hard time window by using both genetic algorithm and heuristic. A mathematical programming model was also suggested in the study. The suggested mathematical programming model gives an optimal solution by using ILOG-CPLEX. This study also suggests a hybrid genetic algorithm which considers the improvement of generation for an initial solution by savings heuristic and two heuristic processes. Two heuristic processes consists of 2-opt and Or-opt. Hybrid genetic algorithm is also compared with existing problems suggested by Solomon. We found better solutions rather than the existing genetic algorithm.

Searching for critical failure surface in slope stability analysis by using hybrid genetic algorithm

  • Li, Shouju;Shangguan, Zichang;Duan, Hongxia;Liu, Yingxi;Luan, Maotian
    • Geomechanics and Engineering
    • /
    • v.1 no.1
    • /
    • pp.85-96
    • /
    • 2009
  • The radius and coordinate of sliding circle are taken as searching variables in slope stability analysis. Genetic algorithm is applied for searching for critical factor of safety. In order to search for critical factor of safety in slope stability analysis efficiently and in a robust manner, some improvements for simple genetic algorithm are proposed. Taking the advantages of efficiency of neighbor-search of the simulated annealing and the robustness of genetic algorithm, a hybrid optimization method is presented. The numerical computation shows that the procedure can determine the minimal factor of safety and be applied to slopes with any geometry, layering, pore pressure and external load distribution. The comparisons demonstrate that the genetic algorithm provides a same solution when compared with elasto-plastic finite element program.

Optimum Design of journal Bearing by the Enhanced Artificial Life Optimization Algorithm (인공생명 알고리듬을 이용한 저널 베어링의 최적설계)

  • 송진대;양보석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.400-403
    • /
    • 2004
  • This paper presents an optimum design of journal bearings using a hybrid method to find the solutions of optimization problem. The present hybrid algorithm, namely Enhanced Artificial Life Algorithm(EALA), is a synthesis of an artificial life algorithm(ALA) and the random tabu search(R-tabu) method. EALA is applied to the optimum design of journal bearings supporting simple rotor. The applicability of EALA to optimum design of rotor-bearing system is exemplified through this study.

  • PDF

A Heuristic Algorithm for Asymmetric Traveling Salesman Problem using Hybrid Genetic Algorithm (혼합형 유전해법을 이용한 비대칭 외판원문제의 발견적해법)

  • 김진규;윤덕균
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.33
    • /
    • pp.111-118
    • /
    • 1995
  • This paper suggests a hybrid genetic algorithm for asymmetric traveling salesman problem(TSP). The TSP was proved to be NP-complete, so it is difficult to find optimal solution in reasonable time. Therefore it is important to develope an algorithm satisfying robustness. The algorithm applies dynamic programming to find initial solution. The genetic operator is uniform order crossover and scramble sublist mutation. And experiment of parameterization has been performed.

  • PDF

A Development of Parallel Type Hybrid Drivetrain System for Transit Bus Part 6 : A Development of Shift Control Algorithm for Improving the Shift Characteristics of the Hybrid Drivetrain with AMT (버스용 병렬형 하이브리드 동력전달계의 개발 (VI) 제 6 편 : 하이브리드 동력전달계용 자동화 변속기의 변속 질 향상을 위한 변속 제어 알고리듬의 개발)

  • 조성태;전순일;조한상;박영일;이장무
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.105-114
    • /
    • 2001
  • In this study, a shift control algorithm far improving the shift quality of a parallel hybrid drivetrain with an automated manual transmission (AM) is proposed. The general AMT requires the sophisticated control of clutch in the clutch engagement to improve its shift characteristics, and that is generally known to be difficult. But in this hybrid drivetrain, we can control the speeds of clutch plates by engine and motor control, and it provides the easier clutch control in shift process than general AMT. Additionally, it permits the much-reduced shift shock. The motor control during the shift period is also to achieve reduced velocity drop of the vehicle in comparison with that of a general AMT. Furthermore various dynamometer-based experiments are carried out to prove the validity of the proposed shift control algorithm.

  • PDF

Objects Tracking of the Mobile Robot Using the Hybrid Visual Servoing (혼합 비주얼 서보잉을 통한 모바일 로봇의 물체 추종)

  • Park, Kang-IL;Woo, Chang-Jun;Lee, Jangmyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.8
    • /
    • pp.781-787
    • /
    • 2015
  • This paper proposes a hybrid visual servoing algorithm for the object tracking by a mobile robot with the stereo camera. The mobile robot with the stereo camera performs an object recognition and object tracking using the SIFT and CAMSHIFT algorithms for the hybrid visual servoing. The CAMSHIFT algorithm using stereo camera images has been used to obtain the three-dimensional position and orientation of the mobile robot. With the hybrid visual servoing, a stable balance control has been realized by a control system which calculates a desired angle of the center of gravity whose location depends on variations of link rotation angles of the manipulator. A PID controller algorithm has adopted in this research for the control of the manipulator since the algorithm is simple to design and it does not require unnecessary complex dynamics. To demonstrate the control performance of the hybrid visual servoing, real experiments are performed using the mobile manipulator system developed for this research.

Hybrid Genetic Algorithm for Classifier Ensemble Selection (분류기 앙상블 선택을 위한 혼합 유전 알고리즘)

  • Kim, Young-Won;Oh, Il-Seok
    • The KIPS Transactions:PartB
    • /
    • v.14B no.5
    • /
    • pp.369-376
    • /
    • 2007
  • This paper proposes a hybrid genetic algorithm(HGA) for the classifier ensemble selection. HGA is added a local search operation for increasing the fine-turning of local area. This paper apply hybrid and simple genetic algorithms(SGA) to the classifier ensemble selection problem in order to show the superiority of HGA. And this paper propose two methods(SSO: Sequential Search Operations, CSO: Combinational Search Operations) of local search operation of hybrid genetic algorithm. Experimental results show that the HGA has better searching capability than SGA. The experiments show that the CSO considering the correlation among classifiers is better than the SSO.