• 제목/요약/키워드: Hybrid $A^*$ algorithm

검색결과 1,790건 처리시간 0.032초

A Hybridization of Adaptive Genetic Algorithm and Particle Swarm Optimization for Numerical Optimization Functions

  • Yun, Young-Su;Gen, Mitsuo
    • 한국산업정보학회:학술대회논문집
    • /
    • 한국산업정보학회 2008년도 추계 공동 국제학술대회
    • /
    • pp.463-467
    • /
    • 2008
  • Heuristic optimization using hybrid algorithms have provided a robust and efficient approach for solving many optimization problems. In this paper, a new hybrid algorithm using adaptive genetic algorithm (aGA) and particle swarm optimization (PSO) is proposed. The proposed hybrid algorithm is applied to solve numerical optimization functions. The results are compared with those of GA and other conventional PSOs. Finally, the proposed hybrid algorithm outperforms others.

  • PDF

Humpback Whale Assisted Hybrid Maximum Power Point Tracking Algorithm for Partially Shaded Solar Photovoltaic Systems

  • Premkumar, Manoharan;Sumithira, Rameshkumar
    • Journal of Power Electronics
    • /
    • 제18권6호
    • /
    • pp.1805-1818
    • /
    • 2018
  • This paper proposes a novel hybrid maximum power point tracking (MPPT) algorithm combining a Whale Optimization Algorithm (WOA) and the conventional Perturb & Observation (P&O) to track/extract the highest amount of power from a solar photovoltaic (SPV) system working under partial shading conditions (PSCs). The proposed hybrid algorithm is based on a WOA which predicts the initial global peak (GP) and is followed by P&O in the final stage to achieve a quicker convergence to a GP. Thus, this hybrid algorithm overcomes the computational burden encountered in a standalone WOA, grey wolf optimization (GWO) and hybrid GWO reported in the literature. The conventional algorithm searches for the maximum power point (MPP) in the predicted region by the WOA. The proposed MPPT technique is modelled and simulated using MATLAB/Simulink for simulating an environment to check its effectiveness in accurately tracking the MPP during the GP region. This hybrid algorithm is compared with a standalone WOA, GWO and hybrid GWO. From the simulating results, it is shown that the proposed algorithm offers high tracking performance and that it increases the output power level of a SPV system under partial shading. The algorithm also verified experimentally on various PSCs.

유전 알고리듬을 이용한 자동 동조 퍼지 제어기의 하이브리드 최적화 기법 (Hybrid Optimization Techniques Using Genetec Algorithms for Auto-Tuning Fuzzy Logic Controllers)

  • 유동완;이영석;박윤호;서보혁
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권1호
    • /
    • pp.36-43
    • /
    • 1999
  • This paper proposes a new hybrid genetic algorithm for auto-tuning fuzzy controllers improving the performance. In general, fuzzy controllers use pre-determined moderate membership functions, fuzzy rules, and scaling factors, by trial and error. The presented algorithm estimates automatically the optimal values of membership functions, fuzzy rules, and scaling factors for fuzzy controllers, using a hybrid genetic algorithm. The object of the proposed algorithm is to promote search efficiency by the hybrid optimization technique. The proposed hybrid genetic algorithm is based on both the standard genetic algorithm and a modified gradient method. If a maximum point is not be changed around an optimal value at the end of performance during given generation, the hybrid genetic algorithm searches for an optimal value using the the initial value which has maximum point by converting the genetic algorithms into the MGM(Modified Gradient Method) algorithms that reduced the number of variables. Using this algorithm is not only that the computing time is faster than genetic algorithm as reducing the number of variables, but also that can overcome the disadvantage of genetic algoritms. Simulation results verify the validity of the presented method.

  • PDF

요격미사일 배치문제에 대한 하이브리드 유전알고리듬 적용방법 연구 (An Application of a Hybrid Genetic Algorithm on Missile Interceptor Allocation Problem)

  • 한현진
    • 한국국방경영분석학회지
    • /
    • 제35권3호
    • /
    • pp.47-59
    • /
    • 2009
  • A hybrid Genetic Algorithm is applied to military resource allocation problem. Since military uses many resources in order to maximize its ability, optimization technique has been widely used for analysing resource allocation problem. However, most of the military resource allocation problems are too complicate to solve through the traditional operations research solution tools. Recent innovation in computer technology from the academy makes it possible to apply heuristic approach such as Genetic Algorithm(GA), Simulated Annealing(SA) and Tabu Search(TS) to combinatorial problems which were not addressed by previous operations research tools. In this study, a hybrid Genetic Algorithm which reinforces GA by applying local search algorithm is introduced in order to address military optimization problem. The computational result of hybrid Genetic Algorithm on Missile Interceptor Allocation problem demonstrates its efficiency by comparing its result with that of a simple Genetic Algorithm.

Hybrid artificial bee colony-grey wolf algorithm for multi-objective engine optimization of converted plug-in hybrid electric vehicle

  • Gujarathi, Pritam K.;Shah, Varsha A.;Lokhande, Makarand M.
    • Advances in Energy Research
    • /
    • 제7권1호
    • /
    • pp.35-52
    • /
    • 2020
  • The paper proposes a hybrid approach of artificial bee colony (ABC) and grey wolf optimizer (GWO) algorithm for multi-objective and multidimensional engine optimization of a converted plug-in hybrid electric vehicle. The proposed strategy is used to optimize all emissions along with brake specific fuel consumption (FC) for converted parallel operated diesel plug-in hybrid electric vehicle (PHEV). All emissions particulate matter (PM), nitrogen oxide (NOx), carbon monoxide (CO) and hydrocarbon (HC) are considered as optimization parameters with weighted factors. 70 hp engine data of NOx, PM, HC, CO and FC obtained from Oak Ridge National Laboratory is used for the study. The algorithm is initialized with feasible solutions followed by the employee bee phase of artificial bee colony algorithm to provide exploitation. Onlooker and scout bee phase is replaced by GWO algorithm to provide exploration. MATLAB program is used for simulation. Hybrid ABC-GWO algorithm developed is tested extensively for various values of speeds and torque. The optimization performance and its environmental impact are discussed in detail. The optimization results obtained are verified by real data engine maps. It is also compared with modified ABC and GWO algorithm for checking the effectiveness of proposed algorithm. Hybrid ABC-GWO offers combine benefits of ABC and GWO by reducing computational load and complexity with less computation time providing a balance of exploitation and exploration and passes repeatability towards use for real-time optimization.

A hybrid tabu-simulated annealing heuristic algorithm for optimum design of steel frames

  • Degertekin, S.O.;Hayalioglu, M.S.;Ulker, M.
    • Steel and Composite Structures
    • /
    • 제8권6호
    • /
    • pp.475-490
    • /
    • 2008
  • A hybrid tabu-simulated annealing algorithm is proposed for the optimum design of steel frames. The special character of the hybrid algorithm is that it exploits both tabu search and simulated annealing algorithms simultaneously to obtain near optimum. The objective of optimum design problem is to minimize the weight of steel frames under the actual design constraints of AISC-LRFD specification. The performance and reliability of the hybrid algorithm were compared with other algorithms such as tabu search, simulated annealing and genetic algorithm using benchmark examples. The comparisons showed that the hybrid algorithm results in lighter structures for the presented examples.

Performance Evaluation of Lower Complexity Hybrid-Fix-and-Round-LLL Algorithm for MIMO System

  • Lv, Huazhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권6호
    • /
    • pp.2554-2580
    • /
    • 2018
  • Lenstra-Lenstra-$Lov{\acute{a}}sz$ (LLL) is an effective receiving algorithm for Multiple-Input-Multiple-Output (MIMO) systems, which is believed can achieve full diversity in MIMO detection of fading channels. However, the LLL algorithm features polynomial complexity and shows poor performance in terms of convergence. The reduction of algorithmic complexity and the acceleration of convergence are key problems in optimizing the LLL algorithm. In this paper, a variant of the LLL algorithm, the Hybrid-Fix-and-Round LLL algorithm, which combines both fix and round measurements in the size reduction procedure, is proposed. By utilizing fix operation, the algorithmic procedure is altered and the size reduction procedure is skipped by the hybrid algorithm with significantly higher probability. As a consequence, the simulation results reveal that the Hybrid-Fix-and-Round-LLL algorithm carries a faster rate of convergence compared to the original LLL algorithm, and its algorithmic complexity is at most one order lower than original LLL algorithm in real field. Comparing to other families of LLL algorithm, Hybrid-Fix-and-Round-LLL algorithm can make a better compromise in performance and algorithmic complexity.

A hybrid CSS and PSO algorithm for optimal design of structures

  • Kaveh, A.;Talatahari, S.
    • Structural Engineering and Mechanics
    • /
    • 제42권6호
    • /
    • pp.783-797
    • /
    • 2012
  • A new hybrid meta-heuristic optimization algorithm is presented for design of structures. The algorithm is based on the concepts of the charged system search (CSS) and the particle swarm optimization (PSO) algorithms. The CSS is inspired by the Coulomb and Gauss's laws of electrostatics in physics, the governing laws of motion from the Newtonian mechanics, and the PSO is based on the swarm intelligence and utilizes the information of the best fitness historically achieved by the particles (local best) and by the best among all the particles (global best). In the new hybrid algorithm, each agent is affected by local and global best positions stored in the charged memory considering the governing laws of electrical physics. Three different types of structures are optimized as the numerical examples with the new algorithm. Comparison of the results of the hybrid algorithm with those of other meta-heuristic algorithms proves the robustness of the new algorithm.

하이브리드 PTV-PIV알고리듬에 의한 고정밀 와도 추정 (Precise Estimations on Vorticities using a Hybrid PTV-PIV Algorithm)

  • 도덕희;조경래;이재민
    • 한국가시화정보학회지
    • /
    • 제8권4호
    • /
    • pp.26-30
    • /
    • 2010
  • A PTV algorithm was constructed using a linear transformation, in which the merits of the conventional PIV and PTV were adopted. In PIV calculations, the obtained velocity vectors are affected by the filtering effects by its calculation principle. PTV techniques are widely used for their excellences of measuring small scaled flows, such as nano and bio flows. However, PTVs produce vector errors due to interpolation process. To overcome these problems, a hybrid PTV algorithm was constructed by combining PTVs' and PIVs' benefits using a linear transformation. The Taylor-Green vortex flows were generated for the tests of vorticity calculations. The conventional gray-level cross-correlation PIV technique and 2-Frame PTV technique were tested for the same flows for comparisons with those obtained by the constructed hybrid algorithm. The excellence of the constructed hybrid algorithm was validated through an actual experiment on the cylinder wake.

멀티미디어 트래픽 제어를 위한 Hybrid LB-TJW 알고리즘에 관한 연구 (A Study on Hybrid LB-TJW Algorithm for Multimedia Traffic Control)

  • 이병수;구경옥;박성곤;조용환
    • 한국통신학회논문지
    • /
    • 제22권4호
    • /
    • pp.833-841
    • /
    • 1997
  • In this paper, the hybrid LB-TJW(Leaky Bucket-Triggered Jumping Window) algorithm for multimedia traffic control is proposed and its performance is evaluated and analyzed. Its architecture is composed of the peak bit rate controller and the average bit rate controller. Generally, the cell which violates the peak bit rate is discraded in LBalgorithm, and the average bit rate of JW or TJW algorithm is better than that of LB algorithm. However, the hybrid LB-TJW algorithm passes it though the network if the cell does not violate the peak bit rate. If the cell violates the peak bit rate, the hybrid LB-TJW algorithm passes it to the average bit rate controller which perforithm to monitor the average bit rate of input traffic. The TJW algorithm monitors the cell that violates the average bit rate. If the cell does not violate the average bit rare, the LB-TJW algorithm passes it through the network. As simulation results, the cell loss rate and the buffer size of the LB-TJW algorithm is reduced to half as much as those of LB algortihm.

  • PDF