• Title/Summary/Keyword: Hybrid/Hybrid Search

Search Result 412, Processing Time 0.023 seconds

Hybrid argon plasma coagulation in Barrett's esophagus: a systematic review and meta-analysis

  • Sagar N. Shah;Nabil El Hage Chehade;Amirali Tavangar;Alyssa Choi;Marc Monachese;Kenneth J. Chang;Jason B. Samarasena
    • Clinical Endoscopy
    • /
    • v.56 no.1
    • /
    • pp.38-49
    • /
    • 2023
  • Background/Aims: Patients with Barrett's esophagus are at increased risk of developing esophageal adenocarcinoma. Endoscopic therapies aim to eradicate dysplastic and metaplastic tissues. Hybrid argon plasma coagulation (hybrid-APC) utilizes submucosal fluid injection to create a protective cushion prior to ablation that shields the submucosa from injury. We performed a pooled meta-analysis to evaluate the safety and efficacy of hybrid-APC. Methods: We conducted a systematic search of major electronic databases in April 2022. Studies that included patients with dysplastic and non-dysplastic Barrett's esophagus undergoing treatment with hybrid-APC were eligible for inclusion. Outcome measures included complete remission of intestinal metaplasia (CR-IM), stricture formation, serious adverse events, and number of sessions necessary to achieve CR-IM. Results: Overall pooled CR-IM rate for patients undergoing hybrid-APC was 90.8% (95% confidence interval [CI], 0.872-0.939; I2=0%). Pooled stricture rate was 2.0% (95% CI, 0.005-0.042; I2=0%). Overall serious adverse event rate was 2.7% (95% CI, 0.007-0.055; I2=0%). Conclusions: Results of the current meta-analysis suggest that hybrid-APC is associated with high rates of CR-IM and a favorable safety profile. Interpretation of these results is limited by the inclusion of retrospective cohort and case series data. Randomized controlled trials that standardize treatment and outcome evaluation protocols are necessary to understand how this treatment option is comparable to the current standards of care.

GA-VNS-HC Approach for Engineering Design Optimization Problems (공학설계 최적화 문제 해결을 위한 GA-VNS-HC 접근법)

  • Yun, YoungSu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.1
    • /
    • pp.37-48
    • /
    • 2022
  • In this study, a hybrid meta-heuristic approach is proposed for solving engineering design optimization problems. Various approaches in many literatures have been proposed to solve engineering optimization problems with various types of decision variables and complex constraints. Unfortunately, however, their efficiencies for locating optimal solution do not be highly improved. Therefore, we propose a hybrid meta-heuristic approach for improving their weaknesses. the proposed GA-VNS-HC approach is combining genetic algorithm (GA) for global search with variable neighborhood search (VNS) and hill climbing (HC) for local search. In case study, various types of engineering design optimization problems are used for proving the efficiency of the proposed GA-VNS-HC approach

Hybrid of the fuzzy logic controller with the harmony search algorithm to PWR in-core fuel management optimization

  • Mahmoudi, Sayyed Mostafa;Rad, Milad Mansouri;Ochbelagh, Dariush Rezaei
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3665-3674
    • /
    • 2021
  • One of the important parts of the in-core fuel management is loading pattern optimization (LPO). The loading pattern optimization as a reasonable design of the in-core fuel management can improve both economic and safe aspects of the nuclear reactor. This work proposes the hybrid of fuzzy logic controller with harmony search algorithm (HS) for loading pattern optimization in a pressurized water reactor. The music improvisation process to find a pleasing harmony is inspiring the harmony search algorithm. In this work, the adjustment of the harmony search algorithm parameters such as the bandwidth and the pitch adjustment rate are increasing performance of the proposed algorithm which is done through a fuzzy logic controller. Hence, membership functions and fuzzy rules are designed to improve the performance of the HS algorithm and achieve optimal results. The objective of the method is finding an optimum core arrangement according to safety and economic aspects such as reduction of power peaking factor (PPF) and increase of effective multiplication factor (Keff). The proposed approach effectiveness has been tried in two cases, Michalewicz's bivariate function problem and NEACRP LWR core. The results show that by using fuzzy harmony search algorithm the value of the fitness function is improved by 15.35%. Finally, with regard to the new solutions proposed in this research it could be used as a trustworthy method for other optimization issues of engineering field.

A Hybrid Collaborative Filtering-based Product Recommender System using Search Keywords (검색 키워드를 활용한 하이브리드 협업필터링 기반 상품 추천 시스템)

  • Lee, Yunju;Won, Haram;Shim, Jaeseung;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.151-166
    • /
    • 2020
  • A recommender system is a system that recommends products or services that best meet the preferences of each customer using statistical or machine learning techniques. Collaborative filtering (CF) is the most commonly used algorithm for implementing recommender systems. However, in most cases, it only uses purchase history or customer ratings, even though customers provide numerous other data that are available. E-commerce customers frequently use a search function to find the products in which they are interested among the vast array of products offered. Such search keyword data may be a very useful information source for modeling customer preferences. However, it is rarely used as a source of information for recommendation systems. In this paper, we propose a novel hybrid CF model based on the Doc2Vec algorithm using search keywords and purchase history data of online shopping mall customers. To validate the applicability of the proposed model, we empirically tested its performance using real-world online shopping mall data from Korea. As the number of recommended products increases, the recommendation performance of the proposed CF (or, hybrid CF based on the customer's search keywords) is improved. On the other hand, the performance of a conventional CF gradually decreased as the number of recommended products increased. As a result, we found that using search keyword data effectively represents customer preferences and might contribute to an improvement in conventional CF recommender systems.

Nonlinear Identification of Electronic Brake Pedal Behavior Using Hybrid GMDH and Genetic Algorithm in Brake-By-Wire System

  • Bae, Junhyung;Lee, Seonghun;Shin, Dong-Hwan;Hong, Jaeseung;Lee, Jaeseong;Kim, Jong-Hae
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1292-1298
    • /
    • 2017
  • In this paper, we represent a nonlinear identification of electronic brake pedal behavior in the brake-by-wire (BBW) system based on hybrid group method of data handling (GMDH) and genetic algorithm (GA). A GMDH is a kind of multi-layer network with a structure that is determined through training and which can express nonlinear dynamics as a mathematical model. The GA is used in the GMDH, enabling each neuron to search for its optimal set of connections with the preceding layer. The results obtained with this hybrid approach were compared with different nonlinear system identification methods. The experimental results showed that the hybrid approach performs better than the other methods in terms of root mean square error (RMSE) and correlation coefficients. The hybrid GMDH/GA approach was effective for modeling and predicting the brake pedal system under random braking conditions.

A Hybrid Search Method Based on the Artificial Bee Colony Algorithm (인공벌 군집 알고리즘을 기반으로 한 복합탐색법)

  • Lee, Su-Hang;Kim, Il-Hyun;Kim, Yong-Ho;Han, Seog-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.3
    • /
    • pp.213-217
    • /
    • 2014
  • A hybrid search method based on the artificial bee colony algorithm (ABCA) with harmony search (HS) is suggested for finding a global solution in the field of optimization. Three cases of the suggested algorithm were examined for improving the accuracy and convergence rate. The results showed that the case in which the harmony search was implemented with the onlooker phase in ABCA was the best among the three cases. Although the total computation time of the best case is a little bit longer than the original ABCA under the prescribed conditions, the global solution improved and the convergence rate was slightly faster than those of the ABCA. It is concluded that the suggested algorithm improves the accuracy and convergence rate, and it is expected that it can effectively be applied to optimization problems with many design variables and local solutions.

Improved Hybrid Symbiotic Organism Search Task-Scheduling Algorithm for Cloud Computing

  • Choe, SongIl;Li, Bo;Ri, IlNam;Paek, ChangSu;Rim, JuSong;Yun, SuBom
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3516-3541
    • /
    • 2018
  • Task scheduling is one of the most challenging aspects of cloud computing nowadays, and it plays an important role in improving overall performance in, and services from, the cloud, such as response time, cost, makespan, and throughput. A recent cloud task-scheduling algorithm based on the symbiotic organisms search (SOS) algorithm not only has fewer specific parameters, but also incurs time complexity. SOS is a newly developed metaheuristic optimization technique for solving numerical optimization problems. In this paper, the basic SOS algorithm is reduced, and chaotic local search (CLS) is integrated into the reduced SOS to improve the convergence rate. Simulated annealing (SA) is also added to help the SOS algorithm avoid being trapped in a local minimum. The performance of the proposed SA-CLS-SOS algorithm is evaluated by extensive simulation using the Matlab framework, and is compared with SOS, SA-SOS, and CLS-SOS algorithms. Simulation results show that the improved hybrid SOS performs better than SOS, SA-SOS, and CLS-SOS in terms of convergence speed and makespan.

Simulated squirrel search algorithm: A hybrid metaheuristic method and its application to steel space truss optimization

  • Pauletto, Mateus P.;Kripka, Moacir
    • Steel and Composite Structures
    • /
    • v.45 no.4
    • /
    • pp.579-590
    • /
    • 2022
  • One of the biggest problems in structural steel calculation is the design of structures using the lowest possible material weight, making this a slow and costly process. To achieve this objective, several optimization methods have been developed and tested. Nevertheless, a method that performs very efficiently when applied to different problems is not yet available. Based on this assumption, this work proposes a hybrid metaheuristic algorithm for geometric and dimensional optimization of space trusses, called Simulated Squirrel Search Algorithm, which consists of an association of the well-established neighborhood shifting algorithm (Simulated Annealing) with a recently developed promising population algorithm (Squirrel Search Algorithm, or SSA). In this study, two models are tried, being respectively, a classical model from the literature (25-bar space truss) and a roof system composed of space trusses. The structures are subjected to resistance and displacement constraints. A penalty function using Fuzzy Logic (FL) is investigated. Comparative analyses are performed between the Squirrel Search Algorithm (SSSA) and other optimization methods present in the literature. The results obtained indicate that the proposed method can be competitive with other heuristics.

Robotic Assembly Using Configuration and Force/Torque Information of Tactile Sensor System (접촉센서의 형상과 힘/토크 정보를 이용한 로봇조립)

  • 강이석;김근묵;윤지섭;조형석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2315-2327
    • /
    • 1992
  • A robot assembly method which uses configuration and force/torque information of tactile sensor system and performs chamferless peg-in-hole tasks is suggested and experimentally studied. When the robot gripes the peg with random orientation, the realignment of the peg to the hole center line is successfully performed with the gripping configuration information of the tactile sensor and the inverse kinematics of the robot. The force/torque information of the tactile sensor makes it possible to control the contacting force between mating parts during hole search stage. The suggested algorithm employs a hybrid position/force control and the experiments show that the algorithm accomplishes well peg-in-hole tasks with permissible small contacting force. The chamferless peg-in-hole tasks with smaller clearance than the robot repeatibility can be excuted without any loss or deformation of mating parts. This study the possibility of precise and chamferless parts mating by robot and tactile sensor system.