• Title/Summary/Keyword: Hyaluronic acid derivative

Search Result 5, Processing Time 0.023 seconds

THE EFFECT OF HYALURONIC ACID ON MOUSE CALVARIA PRE-OSTEOBLASTS OSTEOGENESIS IN VITRO (히알루론산이 골 형성에 미치는 영향에 관한 실험적 연구)

  • Cho, Yong-Min;Min, Seung-Ki;Kim, Soo-Nam;You, Yong-Ouk
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.28 no.3
    • /
    • pp.216-225
    • /
    • 2002
  • Hyaluronic acid (HA) is an almost essential component of extracellular matrices. Early in embryogenesis mesenchymal cells migrate, proliferate and differentiate, in part, because of the influence of HA. Since the features of embryogenesis are revisited during wound repair, including bone fracture repair, this study was initiated to evaluate whether HA has an effect on calcification and bone formation in an in vitro system of osteogenesis. Mouse calvaria Pre-osteoblast (MC3T3-E1) cells were cultured in ${\alpha}-MEM$ medium with microorganism-derivative hyaluronic acid that was produced by Strep. zooepidemicus which of molecular weight was 3 million units. The dosages were categorized in each 0.5, 1.0 and 2.0 mg/ml concentration experimental groups. After 2 and 4 days cultures in expeirmental and control groups, the tendency of cell proliferation, MTT assay, protein synthesis ability, collagen synthesis and alkaline phosphatase activity were analysed and bone nodule formation capacity were measured with Alizarin Red S stain after 29 days cultures. The cell proliferation was increased in time, especially the group of 0.5 and 1.0 mg/ml concentration of HA were showed prominent cell proliferation. After 2 and 4 days culture, experimental groups in general were greater cell activity in MTT assay. The protein synthesis was increased in all experimental groups compared to control group, especially most prominent in 1.0 mg/ml concentration group. The collagen synthesis capacity were increased in HA experimental groups, especially prominent in 1.0 mg/ml group and the activity of alkaline phosphatase were increased, especially also prominent in 1.0 mg/ml group, compared to control group. Above these, the activity of mouse carvarial pre-osteoblast cells was showed greater bone osteogenesis activity in all applied HA experimental group, especially group of 1.0 mg/ml concentration of HA.

Structural Characteristics and Anti-inflammatory Activities of Chemically Sulfated-hyaluronic Acid from Streptococcus dysgalactiae (Streptococcus dysgalactiae로부터 분리된 히알루론산과 황화된 유도체의 구조와 항염증 활성)

  • Hong, Chang-Il;Jung, Eui-Gil;Han, Kook-Il;Kim, Yong Hyun;Lee, Sung Hee;Lee, Hong Sub;Han, Man-Deuk
    • Journal of Life Science
    • /
    • v.26 no.5
    • /
    • pp.545-554
    • /
    • 2016
  • Hyaluronic acid (HA) is an important macromolecule in medical and pharmaceutical fields. HA is a natural and linear polymer composed of repeating disaccharide units of β-1, 3-N-acetyl glucosamine and β-1, 4-glucuronic acid. This work aimed to confirm the structural characteristics and anti-inflammatory activities of HA and its chemically sulfated-HA. HA was produced from a fed-batch fermentation process using Streptococcus dysgalactiae in a 5 l bioreactor. HA was isolated water-soluble form (HA-WS) and water-insoluble form (HA-WI) from culture medium, and was obtained chemically sulfated-derivative (S-HA) that resulted in a 90% yield from HA-WI. The structural features of the sulfated- HA (S-HA) were investigated by FT-IR and 1H-NMR spectroscopy. The FT-IR and NMR patterns revealed the similarity in both the FTIR spectrum as well as NMR spectrum of both reference standard and purified HA from S. dysgalactiae. The anti-inflammatory activities of HA and S-HA were examined on LPS-induced RAW 264.7 cells. S-HA was significantly inhibited production of pro-inflammatory mediators such as nitric oxide (NO) and PGE2 and the gene levels of iNOS and COX-2, which are responsible for the production of NO and PGE2, respectively. Furthermore, S-HA also suppressed the overproduction of pro-inflammatory cytokine TNF-α (<80 pg/ml) and IL-6 (<100 pg/ml) compared to that of HA-WI. The present study clearly demonstrates that HA-S exhibits anti-inflammatory activities in RAW 264.7 macrophage cells.

Effect of bFGF and fibroblasts combined with hyaluronic acid-based hydrogels on soft tissue augmentation: an experimental study in rats

  • Lee, Su Yeon;Park, Yongdoo;Hwang, Soon Jung
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.41
    • /
    • pp.47.1-47.10
    • /
    • 2019
  • Background: Hyaluronic acid (HA) has been applied as a primary biomaterial for temporary soft tissue augmentation and as a carrier for cells and the delivery of growth factors to promote tissue regeneration. Although HA derivatives are the most versatile soft tissue fillers on the market, they are resorbed early, within 3 to 12 months. To overcome their short duration, they can be combined with cells or growth factors. The purpose of this study was to investigate the stimulating effects of human fibroblasts and basic fibroblast growth factors (bFGF) on collagen synthesis during soft tissue augmentation by HA hydrogels and to compare these with the effects of a commercial HA derivative (Restylane®). Methods: The hydrogel group included four conditions. The first condition consisted of hydrogel (H) alone as a negative control, and the other three conditions were bFGF-containing hydrogel (HB), human fibroblast-containing hydrogel (HF), and human fibroblast/bFGF-containing hydrogel (HBF). In the Restylane® group (HGF), the hydrogel was replaced with Restylane® (R, RB, RF, RBF). The gels were implanted subdermally into the back of each nude mouse at four separate sites. Twelve nude mice were used for the hydrogel (n = 6) and Restylane® groups (n = 6). The specimens were harvested 8 weeks after implantation and assessed histomorphometrically, and collagen synthesis was evaluated by RT-PCR. Results: The hydrogel group showed good biocompatibility with the surrounding tissues and stimulated the formation of a fibrous matrix. HBF and HF showed significantly higher soft tissue synthesis compared to H (p < 0.05), and human collagen type I was well expressed in HB, HF, and HBF; HBF showed the strongest expression. The Restylane® filler was surrounded by a fibrous capsule without any soft tissue infiltration from the neighboring tissue, and collagen synthesis within the Restylane® filler could not be observed, even though no inflammatory reactions were observed. Conclusion: This study revealed that HA-based hydrogel alone or hydrogel combined with fibroblasts and/or bFGF can be effectively used for soft tissue augmentation.

Polyethyleneimine based Delivery System Coated with Hyaluronate Amine for Improved pDNA Transfection Efficiency (개선된 플라스미드 DNA 전달 효율을 위한 히알루론 아민 코팅 폴리에틸렌이민 기반 전달 시스템)

  • Oh, Kyoung-yeon;Jang, Yongho;Lee, Eunbi;Kim, Tae-ho;Kim, Hyuncheol
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.83-89
    • /
    • 2022
  • Since the pandemic of COVID-19, active investigation to develop immunity to infectious disease by delivering nucleic acids has been proceeded. Particularly, many studies have been conducted on non-viral vector as several vital side-effects which were found on nucleic acid delivery system using viral vectors. In this study, we have developed plasmid DNA (pDNA) loaded-hyaluronic acid derivative (HA) coated-polyethyleneimine (PEI) based polyplex for enhanced nucleic acid delivery efficiency. We have optimized the ratio of pDNA : PEI : HA by measuring size and protein transcription efficiency. The final product, polyplex-HA, was characterized through measuring size, zeta-potential and TEM image. Intracellular uptake and protein transcription efficiency were compared to commercially available transfection reagent, lipofectamine, through fluorescence image and flow cytometry. In conclusion, polyplex-HA presents a novel gene delivery system for efficient and stable protein transcription since it is available for delivering various genetic materials and has less immunoreactivity.